Plasmonic vortices confining orbital angular momentums to surface have aroused wide research interest in the last decade.Recent advances of near-field microscopes have enabled the study on the spatiotemporal dynamics ...Plasmonic vortices confining orbital angular momentums to surface have aroused wide research interest in the last decade.Recent advances of near-field microscopes have enabled the study on the spatiotemporal dynamics of plasmonic vortices,providing a better understanding of optical orbital angular momentums in the evanescent wave regime.However,these works only focused on the objective characterization of plasmonic vortex and have not achieved subjectively tailoring of its spatiotemporal dynamics for specific applications.Herein,it is demonstrated that the plasmonic vortices with the same topological charge can be endowed with distinct spatiotemporal dynamics by simply changing the coupler design.Based on a near-field scanning terahertz microscopy,the surface plasmon fields are directly obtained with ultrahigh spatiotemporal resolution,experimentally exhibiting the generation and evolution divergences during the whole lifetime of plasmonic vortices.The proposed strategy is straightforward and universal,which can be readily applied into visible or infrared frequencies,facilitating the development of plasmonic vortex related researches and applications.展开更多
The system impedance instability,high-order harmonics,and frequency offset are main fault characteristics of wind power system.Moreover,the measurement angle of faulty phase is affected by rotation speed frequency co...The system impedance instability,high-order harmonics,and frequency offset are main fault characteristics of wind power system.Moreover,the measurement angle of faulty phase is affected by rotation speed frequency component,which causes traditional directional protections based on angle comparison between voltage and current to operate incorrectly.In this paper,a time-domain protection for connected to wind power plant based on model matching is proposed,which compares the calculated current and the measured current to identify internal faults and external faults.Under external faults,the calculated current and measured current waveform are quite similar because the protected transmission lines is equivalent to a lumped parameter model and the model itself is not damaged.However,the similarity of calculated current and measured current is quite low,due to destroyed integrity of model under internal faults.Additionally,Hausdorff distance is introduced to obtain the similarity of the calculated current and measured current.Since the proposed protection scheme is applied in time domain,it is independent from current frequency offsets of wind energy system,high-order harmonics,and system impedance variations.Comprehensive case studies are undertaken through Power Systems Computer Aided Design(PSCAD),while simulation results verify the accuracy and efficiency of the proposed approach in fault identification.展开更多
The terahertz regime is widely recognized as a fundamental domain with significant potential to address the demands of next-generation wireless communications.In parallel,mode division multiplexing based on orbital an...The terahertz regime is widely recognized as a fundamental domain with significant potential to address the demands of next-generation wireless communications.In parallel,mode division multiplexing based on orbital angular momentum(OAM)shows promise in enhancing bandwidth utilization,thereby expanding the overall communication channel capacity.In this study,we present both theoretical and experimental demonstrations of an on-chip terahertz OAM demultiplexer.This device effectively couples and steers seven incident terahertz vortex beams into distinct high-quality focusing surface plasmonic beams,and the focusing directions can be arbitrarily designated.The proposed design strategy integrates space-to-chip mode conversion,OAM recognition,and on-chip routing in a compact space with subwavelength thickness,exhibiting versatility and superior performance.展开更多
Surface plasmons(SPs)are electromagnetic surface waves that propagate at the interface between a conductor and a dielectric.Due to their unique ability to concentrate light on two-dimensional platforms and produce ver...Surface plasmons(SPs)are electromagnetic surface waves that propagate at the interface between a conductor and a dielectric.Due to their unique ability to concentrate light on two-dimensional platforms and produce very high local-field intensity,SPs have rapidly fueled a variety of fundamental advances and practical applications.In parallel,the development of metamaterials and metasurfaces has rapidly revolutionized the design concepts of traditional optical devices,fostering the exciting field of meta-optics.This review focuses on recent progress of meta-optics inspired SP devices,which are implemented by the careful design of subwavelength structures and the arrangement of their spatial distributions.Devices of general interest,including coupling devices,on-chip tailoring devices,and decoupling devices,as well as nascent SP applications empowered by sophisticated usage of meta-optics,are introduced and discussed.展开更多
High-performance terahertz(THz)devices with reconfigurable features are highly desirable in many promising THz applications.However,most of the existing reconfigurable THz elements are still limited to volatile respon...High-performance terahertz(THz)devices with reconfigurable features are highly desirable in many promising THz applications.However,most of the existing reconfigurable THz elements are still limited to volatile responses,single functionality,and time-consuming multistep manufacturing procedures.In this paper,we report a lithography-free approach to create reconfigurable and nonvolatile THz components by exploring the reversible,nonvolatile,and continuous THz modulation capability of the phase change material Ge_(2)Sb_(2)Te_(5).As a proof of concept,THz gratings with significant Rayleigh anomalies and diffraction as well as ultrathin THz flat lenses with subwavelength and ultra-broadband focusing capabilities are designed and fabricated on ultrathin Ge_(2)Sb_(2)Te_(5)films using the presented photo-imprint strategy.Moreover,such a method can also be adopted to create more complex THz devices,such as Pancharatnam–Berry phase metasurfaces and grayscale holographic plates.With these findings,the proposed method will provide a promising solution to realize reconfigurable and nonvolatile THz elements.展开更多
The impact of large-scale wind farms on power system stability should be carefully investigated,in which mal-functions usually exist in the collector line's relay protection.In order to solve this challenging prob...The impact of large-scale wind farms on power system stability should be carefully investigated,in which mal-functions usually exist in the collector line's relay protection.In order to solve this challenging problem,a novel time-domain protection scheme for collector lines,based on random matrix theory(RMT),is proposed in this paper.First,the collected currents are preprocessed to form time series data.Then,a real-time sliding time window is used to form a consecutive time series data matrix.Based on RMT,mean spectral radius(MSR)is used to analyze time series data characteristics after real-time calculations are performed.Case studies demonstrate that RMT is independent from fault locations and fault types.In particular,faulty and non-faulty collector lines can be accurately and efficiently identified compared with traditional protection schemes.展开更多
Metasurfaces,especially tunable ones,have played a major role in controlling the amplitude,phase,and polarization of electromagnetic waves and attracted growing interest,with a view toward a new generation of miniatur...Metasurfaces,especially tunable ones,have played a major role in controlling the amplitude,phase,and polarization of electromagnetic waves and attracted growing interest,with a view toward a new generation of miniaturized devices.However,to date,most existing reconfigurable devices are bounded in volatile nature with sustained external energy to maintain and single functionality,which restrict their further applications.Here,we demonstrate for the first time,to our knowledge,nonvolatile,reconfigurable,and dynamic Janus metasurfaces by incorporating phase-change material Ge_(2)Se_(2)Te_(5)(GST)in the terahertz(THz)regime.First,we experimentally show the reversible switching characteristic of GST on large areas by applying a single nanosecond laser pulse,which exhibits excellent contrast of THz properties in both states.Then,we present a multiplex metasurface scheme.In each metasurface,three sets of structures are adopted,in which two sets integrate GST.The effective structures can be reversely modulated by the amorphization and crystallization of GST.As a proof of concept,the dynamic beam splitter,bifocal metalens,dual-mode focusing optical vortex generators,and switchable metalens/focusing optical vortex generators are designed,fabricated,and experimentally characterized,and can be switched reversibly and repeatedly with the help of optical and thermal stimuli.Our scheme will pave the way toward the development of multifunctional and compact THz devices and may find use for applications in THz imaging,sensing,and communications.展开更多
Penicillium oxalicum SL2(SL2) is a previously screened Pb-tolerant fungus that can promote crops growth. The relationship between SL2 colonization and Pb immobilization was studied to provide a theoretical basis for m...Penicillium oxalicum SL2(SL2) is a previously screened Pb-tolerant fungus that can promote crops growth. The relationship between SL2 colonization and Pb immobilization was studied to provide a theoretical basis for microbial remediation of Pb-contaminated paddy soil.In this study, green fluorescent protein(GFP) labeled SL2 was inoculated into different Pbcontaminated paddy soils(S1-S6). The Pb extracted from the soil by HNO, EDTA and CaClwere used to characterize the available Pb. The results showed that the colonization of SL2was divided into lag phase(0-7 days), growth phase(7-30 days), and mortality phase(30-90days). SL2 colonized well in sandy soils rich in clay and total phosphorus with initial p H of 4.5-7.0. In addition, SL2 increased soil p H and decreased soil Eh, which was beneficial to immobilize Pb. In different soils, the highest percentages of CaCl-Pb, EDTA-Pb, and HNO3-Pb immobilized by SL2 were 34.34%-40.53%, 17.05%-20.11%, and 7.39%-15.62%, respectively.Pearson correlation analysis showed that the percentages of CaCl-Pb and EDTA-Pb immobilized by SL2 were significantly positively correlated with the number of SL2 during the growth phase. SL2 mainly immobilized Pb in the growth phase and a higher peak number of SL2 was beneficial to the immobilization of Pb.展开更多
基金supported by the National Natural Science Foundation of China(62005193,62135008,62075158,62025504,61935015)the National Science Foundation(2114103)Guangxi Key Laboratory of Optoelectroric Information Processing(GD20202).
文摘Plasmonic vortices confining orbital angular momentums to surface have aroused wide research interest in the last decade.Recent advances of near-field microscopes have enabled the study on the spatiotemporal dynamics of plasmonic vortices,providing a better understanding of optical orbital angular momentums in the evanescent wave regime.However,these works only focused on the objective characterization of plasmonic vortex and have not achieved subjectively tailoring of its spatiotemporal dynamics for specific applications.Herein,it is demonstrated that the plasmonic vortices with the same topological charge can be endowed with distinct spatiotemporal dynamics by simply changing the coupler design.Based on a near-field scanning terahertz microscopy,the surface plasmon fields are directly obtained with ultrahigh spatiotemporal resolution,experimentally exhibiting the generation and evolution divergences during the whole lifetime of plasmonic vortices.The proposed strategy is straightforward and universal,which can be readily applied into visible or infrared frequencies,facilitating the development of plasmonic vortex related researches and applications.
基金This paper is supported in part by the National Natural Science Foundations of China under Grant Nos.51977102 and 51807084.
文摘The system impedance instability,high-order harmonics,and frequency offset are main fault characteristics of wind power system.Moreover,the measurement angle of faulty phase is affected by rotation speed frequency component,which causes traditional directional protections based on angle comparison between voltage and current to operate incorrectly.In this paper,a time-domain protection for connected to wind power plant based on model matching is proposed,which compares the calculated current and the measured current to identify internal faults and external faults.Under external faults,the calculated current and measured current waveform are quite similar because the protected transmission lines is equivalent to a lumped parameter model and the model itself is not damaged.However,the similarity of calculated current and measured current is quite low,due to destroyed integrity of model under internal faults.Additionally,Hausdorff distance is introduced to obtain the similarity of the calculated current and measured current.Since the proposed protection scheme is applied in time domain,it is independent from current frequency offsets of wind energy system,high-order harmonics,and system impedance variations.Comprehensive case studies are undertaken through Power Systems Computer Aided Design(PSCAD),while simulation results verify the accuracy and efficiency of the proposed approach in fault identification.
基金National Natural Science Foundation of China(62375203,61935015,62027820,62375200,62025504,62075158,62335011)National Science Foundation(2114103)Yunnan Expert Workstation(202205AF150008)。
文摘The terahertz regime is widely recognized as a fundamental domain with significant potential to address the demands of next-generation wireless communications.In parallel,mode division multiplexing based on orbital angular momentum(OAM)shows promise in enhancing bandwidth utilization,thereby expanding the overall communication channel capacity.In this study,we present both theoretical and experimental demonstrations of an on-chip terahertz OAM demultiplexer.This device effectively couples and steers seven incident terahertz vortex beams into distinct high-quality focusing surface plasmonic beams,and the focusing directions can be arbitrarily designated.The proposed design strategy integrates space-to-chip mode conversion,OAM recognition,and on-chip routing in a compact space with subwavelength thickness,exhibiting versatility and superior performance.
基金supported by the National Natural Science Foundation of China(Nos.62005193,62135008,62075158,62175180,61735012,61935015,and 62025504)the U.S.National Science Foundation(No.2114103).
文摘Surface plasmons(SPs)are electromagnetic surface waves that propagate at the interface between a conductor and a dielectric.Due to their unique ability to concentrate light on two-dimensional platforms and produce very high local-field intensity,SPs have rapidly fueled a variety of fundamental advances and practical applications.In parallel,the development of metamaterials and metasurfaces has rapidly revolutionized the design concepts of traditional optical devices,fostering the exciting field of meta-optics.This review focuses on recent progress of meta-optics inspired SP devices,which are implemented by the careful design of subwavelength structures and the arrangement of their spatial distributions.Devices of general interest,including coupling devices,on-chip tailoring devices,and decoupling devices,as well as nascent SP applications empowered by sophisticated usage of meta-optics,are introduced and discussed.
基金Key Fund of Shenzhen Natural Science Foundation(JCYJ20200109150212515)Tianjin Municipal Fund for Distinguished Young Scholars(20JCJQJC00190)+1 种基金National Natural Science Foundation of China(62235013)National Key Research and Development Program of China(2017YFA0701004,2019YFA0709100,2020YFA0714504)。
文摘High-performance terahertz(THz)devices with reconfigurable features are highly desirable in many promising THz applications.However,most of the existing reconfigurable THz elements are still limited to volatile responses,single functionality,and time-consuming multistep manufacturing procedures.In this paper,we report a lithography-free approach to create reconfigurable and nonvolatile THz components by exploring the reversible,nonvolatile,and continuous THz modulation capability of the phase change material Ge_(2)Sb_(2)Te_(5).As a proof of concept,THz gratings with significant Rayleigh anomalies and diffraction as well as ultrathin THz flat lenses with subwavelength and ultra-broadband focusing capabilities are designed and fabricated on ultrathin Ge_(2)Sb_(2)Te_(5)films using the presented photo-imprint strategy.Moreover,such a method can also be adopted to create more complex THz devices,such as Pancharatnam–Berry phase metasurfaces and grayscale holographic plates.With these findings,the proposed method will provide a promising solution to realize reconfigurable and nonvolatile THz elements.
基金the National Natural Science Foundation of China(No.51807085,52037003)Key Science and Technology Project of Yunnan Province,China(202002AF080001)。
文摘The impact of large-scale wind farms on power system stability should be carefully investigated,in which mal-functions usually exist in the collector line's relay protection.In order to solve this challenging problem,a novel time-domain protection scheme for collector lines,based on random matrix theory(RMT),is proposed in this paper.First,the collected currents are preprocessed to form time series data.Then,a real-time sliding time window is used to form a consecutive time series data matrix.Based on RMT,mean spectral radius(MSR)is used to analyze time series data characteristics after real-time calculations are performed.Case studies demonstrate that RMT is independent from fault locations and fault types.In particular,faulty and non-faulty collector lines can be accurately and efficiently identified compared with traditional protection schemes.
基金National Key Research and Development Program of China(2017YFA0701004,2019YFA0709100,2020YFA0714504)Tianjin Municipal Fund for Distinguished Young Scholars(20JCJQJC00190)Key Fund of Shenzhen Natural Science Foundation(JCYJ20200109150212515)。
文摘Metasurfaces,especially tunable ones,have played a major role in controlling the amplitude,phase,and polarization of electromagnetic waves and attracted growing interest,with a view toward a new generation of miniaturized devices.However,to date,most existing reconfigurable devices are bounded in volatile nature with sustained external energy to maintain and single functionality,which restrict their further applications.Here,we demonstrate for the first time,to our knowledge,nonvolatile,reconfigurable,and dynamic Janus metasurfaces by incorporating phase-change material Ge_(2)Se_(2)Te_(5)(GST)in the terahertz(THz)regime.First,we experimentally show the reversible switching characteristic of GST on large areas by applying a single nanosecond laser pulse,which exhibits excellent contrast of THz properties in both states.Then,we present a multiplex metasurface scheme.In each metasurface,three sets of structures are adopted,in which two sets integrate GST.The effective structures can be reversely modulated by the amorphization and crystallization of GST.As a proof of concept,the dynamic beam splitter,bifocal metalens,dual-mode focusing optical vortex generators,and switchable metalens/focusing optical vortex generators are designed,fabricated,and experimentally characterized,and can be switched reversibly and repeatedly with the help of optical and thermal stimuli.Our scheme will pave the way toward the development of multifunctional and compact THz devices and may find use for applications in THz imaging,sensing,and communications.
基金supported by the National Natural Science Foundation of China (No. 42077119)the Innovative Research Group Project of the National Natural Science Foundation of China (No. 41721001)。
文摘Penicillium oxalicum SL2(SL2) is a previously screened Pb-tolerant fungus that can promote crops growth. The relationship between SL2 colonization and Pb immobilization was studied to provide a theoretical basis for microbial remediation of Pb-contaminated paddy soil.In this study, green fluorescent protein(GFP) labeled SL2 was inoculated into different Pbcontaminated paddy soils(S1-S6). The Pb extracted from the soil by HNO, EDTA and CaClwere used to characterize the available Pb. The results showed that the colonization of SL2was divided into lag phase(0-7 days), growth phase(7-30 days), and mortality phase(30-90days). SL2 colonized well in sandy soils rich in clay and total phosphorus with initial p H of 4.5-7.0. In addition, SL2 increased soil p H and decreased soil Eh, which was beneficial to immobilize Pb. In different soils, the highest percentages of CaCl-Pb, EDTA-Pb, and HNO3-Pb immobilized by SL2 were 34.34%-40.53%, 17.05%-20.11%, and 7.39%-15.62%, respectively.Pearson correlation analysis showed that the percentages of CaCl-Pb and EDTA-Pb immobilized by SL2 were significantly positively correlated with the number of SL2 during the growth phase. SL2 mainly immobilized Pb in the growth phase and a higher peak number of SL2 was beneficial to the immobilization of Pb.