Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona...Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.展开更多
Graphene-based gas/vapor sensors have attracted much attention in recent years due to their variety of structures, unique sensing performances, room-temperature working conditions, and tremendous application prospects...Graphene-based gas/vapor sensors have attracted much attention in recent years due to their variety of structures, unique sensing performances, room-temperature working conditions, and tremendous application prospects, etc.Herein, we summarize recent advantages in graphene preparation, sensor construction, and sensing properties of various graphene-based gas/vapor sensors, such as NH_3, NO_2, H_2, CO, SO_2, H_2S, as well as vapor of volatile organic compounds.The detection mechanisms pertaining to various gases are also discussed. In conclusion part, some existing problems which may hinder the sensor applications are presented. Several possible methods to solve these problems are proposed, for example, conceived solutions, hybrid nanostructures, multiple sensor arrays, and new recognition algorithm.展开更多
Ferroptosis is a novel form of programmed cell death impelled by iron-dependent lipid peroxidation,which may be a potential strategy for cancer therapy.Here we demonstrated for the first time that Resveratrol(RSV),a t...Ferroptosis is a novel form of programmed cell death impelled by iron-dependent lipid peroxidation,which may be a potential strategy for cancer therapy.Here we demonstrated for the first time that Resveratrol(RSV),a traditional Chinese medicine(TCM)chemical monomer,could effectually inhibit the growth of colon cancer cells through the ROS-dependent ferroptosis pathway.Mechanistically,RSV evoked the increase of reactive oxygen species and lipid peroxidation in colorectal cancer cells,and eventually lead to ferroptosis.Furthermore,RSV could promote ferroptosis by downregulating the expression of the channel protein solute carrier family 7 member 11(SLC7A11)and glutathione peroxidase 4(GPX4).To improve the delivery efficiency of RSV,a biomimetic nanocarrier was developed by coating RSV-loaded poly(ε-caprolactone)-poly(ethylene glycol)(PCL-PEG)nanoparticles with erythrocyte membrane(RSV-NPs@RBCm).The RSV-NPs@RBCm provide the possibility to escape macrophage phagocytosis and have a long circulation effect.In addition,when coupled with a tumor-penetrating peptide iRGD,which could trigger enhanced tissue penetration tumor-specifically,the delivery of RSV-NPs@RBCm into tumors would be significantly improved results from the in vivo study demonstrated an excellent treatment efficacy for CRC.Altogether,our study highlighted the therapeutic potential of RSV as a ferroptosis-inducing anticancer agent and when loaded into a biomimetic nanoplatform,it might pave the way for the application of RSV loaded nanosystems for colorectal cancer treatment.展开更多
Akebia trifoliata subsp.australis is a well-known medicinal and potential woody oil plant in China.The limited genetic information available for A.trifoliata subsp.australis has hindered its exploitation.Here,a high-q...Akebia trifoliata subsp.australis is a well-known medicinal and potential woody oil plant in China.The limited genetic information available for A.trifoliata subsp.australis has hindered its exploitation.Here,a high-quality chromosomelevel genome sequence of A.trifoliata subsp.australis is reported.The de novo genome assembly of 682.14 Mb was generated with a scaffold N50 of 43.11 Mb.The genome includes 25,598 protein-coding genes,and 71.18%(485.55 Mb)of the assembled sequences were identi fi ed as repetitive sequences.An ongoing massive burst of long terminal repeat(LTR)insertions,which occurred~1.0 million years ago,has contributed a large proportion of LTRs in the genome of A.trifoliata subsp.australis.Phylogenetic analysis shows that A.trifoliata subsp.australis is closely related to Aquilegia coerulea and forms a clade with Papaver somniferum and Nelumbo nucifera,which supports the well-established hypothesis of a close relationship between basal eudicot species.The expansion of UDP-glucoronosyl and UDP-glucosyl transferase gene families and fi-amyrin synthase-like genes and the exclusive contraction of terpene synthase gene families may be responsible for the abundant oleanane-type triterpenoids in A.trifoliata subsp.australis.Furthermore,the acyl-ACP desaturase gene family,including 12 stearoyl-acyl-carrier protein desaturase(SAD)genes,has expanded exclusively.A combined transcriptome and fatty-acid analysis of seeds at fi ve developmental stages revealed that homologs of SADs,acyl-lipid desaturase omega fatty acid desaturases(FADs),and oleosins were highly expressed,consistent with the rapid increase in the content of fatty acids,especially unsaturated fatty acids.The genomic sequences of A.trifoliata subsp.australis will be a valuable resource for comparative genomic analyses and molecular breeding.展开更多
Thermal insulation is an important indicator to evaluate the construction material in cold region engineering.As we know,adding the industrial waste as lightweight aggregate or creating the pore inside the cement-base...Thermal insulation is an important indicator to evaluate the construction material in cold region engineering.As we know,adding the industrial waste as lightweight aggregate or creating the pore inside the cement-based composite could make the texture loose,and the thermal insulating capacity of the material would be improved with this texture.Using these methods,the industrial by-product and engineering waste could be cycled in an efficient way.Moreover,after service the fragmented cement composites paste could be used as aggregate in the thermal insulating concrete again.While the porous texture is not favorable for the mechanical strength and long-term durability in a cold environment.To balance the above three requirements from two opposite directions,different processing methods were applied to create the thermal insulation concrete/mortar.Firstly,the organic/inorganic lightweight aggregate,including the Expanded Polystyrene(EPS),Expanded Perlite(EP),and Ceramsite(CRMST)particles,were applied to create the Lightweight Aggregate Concrete(LWAC).As the comparative tests,the expanded Superabsorbent Polymer(SAP)hydrogel and Air-Entraining Agent(AEA)were also introduced to create the porous mortar.The above concrete/mortar was tested in the normal state and under the Freeze-Thaw cycle to explore the engineering performance in cold regions.During the experimenting process,the thermal insulation,mechanical strength,and frost resistance of these cement-based composites were investigated,and an optimal thermal insulation concrete/mortar was determined.展开更多
Breeding sterile lines is the key to the development of hybrid rice with wide adaptability. However, at present, few wide-adaptability sterile lines have been applied in production practice. In this study, Yungu 3A, a...Breeding sterile lines is the key to the development of hybrid rice with wide adaptability. However, at present, few wide-adaptability sterile lines have been applied in production practice. In this study, Yungu 3A, a new WA-type Indica CMS line with good grain quality, was developed by hybridization between Yunfeng 66A with wide adaptability as female parent and F1 plants of Yunfeng 66B/D62B as male parent and continuous backcrossing. According to the results, the finally obtained lndica CMS line Yungu 3A has good plant type and leaf shape, strong tillering ability, excellent flowering habit, stable and complete male sterility with the sterile plant rate and pollen sterility rate of 100%, strong combining ability, high outcrossing rate, low sensitivity to light and temperature, and strong disease resistance, which was approved by Yunnan Provincial Crop Variety Appraisal Committee in 2013. Yungu 3A is conducive to the development of new hybrid rice combinations with good quality and wide adaptability, exhibiting a promising prospect of application.展开更多
In this study,records published by General Administration of Quality Supervision,Inspection and Quarantine of China and related literature on harmful organisms intercepted from imported seeds and seedlings during 2011...In this study,records published by General Administration of Quality Supervision,Inspection and Quarantine of China and related literature on harmful organisms intercepted from imported seeds and seedlings during 2011-2014 were investigated and analyzed.The results showed that the species and amount of harmful organisms intercepted from imported seeds and seedlings increased gradually during 2011-2014,which posed a realistic or potential threat to agriculture production in China.Based on the present situation,corresponding suggestions and countermeasures were proposed:1 strengthening the study on rapid detection technology of harmful organisms;2 improving the ability of animal and plant quarantine in China.展开更多
Fretting wear damage of high-strength titanium fasteners has caused a large number of disastrous accidents.Traditionally,it is believed that both high strength and excellent ductility can reduce fretting wear damage.H...Fretting wear damage of high-strength titanium fasteners has caused a large number of disastrous accidents.Traditionally,it is believed that both high strength and excellent ductility can reduce fretting wear damage.However,whether strength and ductility are contradictory or not and their appropriate matching strategy under the external applied normal stress(Fw)are still confusing problems.Here,by analyzing the subsurface-microstructure deformation mechanism of several samples containing variousαprecipitate features,for the first time,we design strategies to improve fretting damage resistance under different matching relation between Fw and the tensile strength of materials(Rm).It is found that when Fw is greater than Rm or Fw is nearly equivalent to Rm,the deformation mechanism mainly manifests as serious grain fragmentation ofβandαGB constituents.Homogeneous deformation in large areas only reduces damage to a limited extent.It is crucial to improve the strength to resist cracking and wear,but it is of little significance to improve the ductility.However,when Fw is far less than Rm,coordinated deformation ability reflected by ductility plays a more important role.The deformation mechanism mainly manifests as localized deformation ofβandαGB constituents(kinking induced by twinning and spheroidizing).A unique composite structure of nano-grained/lamellar layer and localized deformation transition layer reduces fretting damage by five times compared with a single nanograined layer.Only when the strength is great enough,improving the plasticity can reduce wear.This study can provide a principle for designing fretting damage resistant alloys.展开更多
A Nitsche-based element-free Galerkin(EFG)method for solving semilinear elliptic problems is developed and analyzed in this paper.The existence and uniqueness of the weak solution for semilinear elliptic problems are ...A Nitsche-based element-free Galerkin(EFG)method for solving semilinear elliptic problems is developed and analyzed in this paper.The existence and uniqueness of the weak solution for semilinear elliptic problems are proved based on a condition that the nonlinear term is an increasing Lipschitz continuous function of the unknown function.A simple iterative scheme is used to deal with the nonlinear integral term.We proved the existence,uniqueness and convergence of the weak solution sequence for continuous level of the simple iterative scheme.A commonly used assumption for approximate space,sometimes called inverse assumption,is proved.Optimal order error estimates in L 2 and H1 norms are proved for the linear and semilinear elliptic problems.In the actual numerical calculation,the characteristic distance h does not appear explicitly in the parameterβintroduced by the Nitsche method.The theoretical results are confirmed numerically。展开更多
In the majority of rechargeable batteries including lithium-ion batteries,polyvinylidene fluoride(PVdF)binders are the most commonly used binder for both anode and cathode.However,using PVdF binder requires the organi...In the majority of rechargeable batteries including lithium-ion batteries,polyvinylidene fluoride(PVdF)binders are the most commonly used binder for both anode and cathode.However,using PVdF binder requires the organic solvent of N-methyl-2-pyrrolidone which is expensive,volatile,combustible,toxic,and has poor recyclability.Therefore,switching to aqueous electrode processing routes with non-toxic binders would provide a great leap forward towards the realization of ideally fully sustainable and environmentally friendly electrochemical energy storage devices.Various water-soluble binders(aqueous binders)were characterized and compared to the performance of conventional PVdF.Our study demonstrates that the electrochemical performance of Zn/MnO_(2) aqueous batteries is significantly improved by using sodium carboxymethyl cellulose(CMC)binder.In addition,CMC binders offer desirable adhesion,good wettability,homogeneous material distribution,and strong chemical stability at certain pH levels(3.5-5)without any decomposition for long-cycle life.展开更多
In solid basic catalysis field,how to achieve optimized activity and desired stability through elaborate control over basic site properties remains a challenge.In this work,taking advantage of the structure memory eff...In solid basic catalysis field,how to achieve optimized activity and desired stability through elaborate control over basic site properties remains a challenge.In this work,taking advantage of the structure memory effect of layered double hydroxides(LDHs),rehydrated Ca4 Al1-x Gax-LDHs and Ca4 Al1-x Inx-LDHs catalysts were prepared and applied in aldol condensation reaction that isobutyraldehyde(IBD)reacts with formaldehyde(FA)to obtain hydroxypivalaldehyde(HPA).Notably,the resulting re-Ca4 Al0.90Ga0.10-LDHs exhibits an extraordinarily-high catalytic activity(HPA yield:72%),which is to our best knowledge the highest level in this reaction.The weak Br?nsted basic site,7-coordinated Ca-OH group,which serves as an active site,catalyzes the condensation process and promotes the product desorption.Studies on structure-property correlations demonstrate that Ga as a structural promoter induces a moderate expansion of the laminate lattice,which results in a significant increase in the concentration of weak basic sites in re-Ca4Al0.90Ga0.10-LDHs,accounting for its high catalytic activity.This work illuminates that geometric structure of basic active sites can be tuned via introducing catalyst additive,which leads to a largely improved performance of hydrotalcite solid basic catalysts towards aldol condensation reaction.展开更多
Although laser-induced breakdown spectroscopy(LIBS),as a fast on-line analysis technology,has great potential and competitiveness in the analysis of chemical composition and proximate analysis results of coal in therm...Although laser-induced breakdown spectroscopy(LIBS),as a fast on-line analysis technology,has great potential and competitiveness in the analysis of chemical composition and proximate analysis results of coal in thermal power plants,the measurement repeatability of LIBS needs to be further improved due to the difficulty in controlling the stability of the generated plasmas at present.In this paper,we propose a novel x-ray fluorescence(XRF) assisted LIBS method for high repeatability analysis of coal quality,which not only inherits the ability of LIBS to directly analyze organic elements such as C and H in coal,but also uses XRF to make up for the lack of stability of LIBS in determining other inorganic ash-forming elements.With the combination of elemental lines in LIBS and XRF spectra,the principal component analysis and the partial least squares are used to establish the prediction model and perform multi-elemental and proximate analysis of coal.Quantitative analysis results show that the relative standard deviation(RSD) of C is 0.15%,the RSDs of other elements are less than 4%,and the standard deviations of calorific value,ash content,sulfur content and volatile matter are 0.11 MJ kg,0.17%,0.79% and 0.41%respectively,indicating that the method has good repeatability in determination of coal quality.This work is helpful to accelerate the development of LIBS in the field of rapid measurement of coal entering the power plant and on-line monitoring of coal entering the furnace.展开更多
Objective: The purposes of this study were to assess the efficacy of allogeneic hematopoietic stem cell transplantation (HSCT) for acute leukemia (AL) and analyze the factors affecting the prognosis of these pati...Objective: The purposes of this study were to assess the efficacy of allogeneic hematopoietic stem cell transplantation (HSCT) for acute leukemia (AL) and analyze the factors affecting the prognosis of these patients. Methods: The clinical and follow-up data of 93 AL patients (median age, 30 years) undergoing allogeneic HSCT in Xiangya Hospital over the past 12 years were collected, and the potential factors affecting the efficacy and prognosis of allogeneic HSCT patients were determined. Results: Hematopoietic reconstitution was achieved in 90 patients. At the last follow-up, the incidences of severe acute graft versus host disease (aGvHD) and extensive chronic GvHD (cGvHD) were 14.0% and 20.0%, the 3-year cumulative incidence of transplantation related mortality (TRM) and relapse rate were 16.8%±6.1% and 21.3%±6.7%, and the estimated 3-year overall survival (OS) and disease-free survival (DFS) of the patients were 64.6%±5.4% and 56.5%±5.5%, respectively. Univariate analysis indicated that age older than 40 years, HLA mismatch, and severe lung infection within the first 100 days after transplantation were risk factors for severe aGvHD, age older than 40 years, HLA mismatch, severe lung infection within the first 100 days after transplantation, and severe aGvHD were risk factors for TRM, high-risk AL and lack of cGvHD were risk factors for relapse (all P〈0.05). Survival estimation showed that HLA mismatch, severe lung infection occurring within the first 100 days post-transplantation, high-risk AL severe aGvHD and lack of cGvHD were risk factors associated with poor prognosis (all P〈0.05). Further multivariate analyses revealed that severe lung infection within the first 100 days post-transplantation, severe aGvHD and lack of cGvHD were independent risk factors for unfavorable outcomes (all P〈0.05). Conclusions: Allogeneic HSCT can improve the DFS of AL patients, and severe lung infection within the first 100 days post-transplantation, severe aGvHD and lack of cGvHD are independent risk factors affecting the prognosis.展开更多
A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically...A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically. In our method, candidate regions are generated using the salient detection in each frame and then classified by an eural network. A kernelized correlation filter(KCF) is employed to track each target until it disappears or the peak-sidelobe ratio is lower than a threshold. Besides, we define the birth and death of each tracker for the targets. The tracker is recycled if its target disappears and can be assigned to a new target. The algorithm is evaluated on the PAFISS and UAV123 datasets. The results show a good performance on both the tracking accuracy and speed.展开更多
文摘Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.
基金financial supports provided by the National Basic Research Program of China(2013CB932500)the National Natural Science Foundation of China(21171117 and 61574091)+3 种基金the Program for New Century Excellent Talents in University(NCET-12-0356)the Program of Shanghai Academic/Technology Research Leader(15XD1525200)Shanghai Jiao Tong University Agri-X Funding(Agri-X2015007)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning
文摘Graphene-based gas/vapor sensors have attracted much attention in recent years due to their variety of structures, unique sensing performances, room-temperature working conditions, and tremendous application prospects, etc.Herein, we summarize recent advantages in graphene preparation, sensor construction, and sensing properties of various graphene-based gas/vapor sensors, such as NH_3, NO_2, H_2, CO, SO_2, H_2S, as well as vapor of volatile organic compounds.The detection mechanisms pertaining to various gases are also discussed. In conclusion part, some existing problems which may hinder the sensor applications are presented. Several possible methods to solve these problems are proposed, for example, conceived solutions, hybrid nanostructures, multiple sensor arrays, and new recognition algorithm.
基金by the National Natural Science Foundation of China(81773211,81871942,82073308,81672411)the High-level startup fund of Nanjing Medical University(KY109RC2019010)the Natural Science Foundation of Jiangsu Province(BK20201086).
文摘Ferroptosis is a novel form of programmed cell death impelled by iron-dependent lipid peroxidation,which may be a potential strategy for cancer therapy.Here we demonstrated for the first time that Resveratrol(RSV),a traditional Chinese medicine(TCM)chemical monomer,could effectually inhibit the growth of colon cancer cells through the ROS-dependent ferroptosis pathway.Mechanistically,RSV evoked the increase of reactive oxygen species and lipid peroxidation in colorectal cancer cells,and eventually lead to ferroptosis.Furthermore,RSV could promote ferroptosis by downregulating the expression of the channel protein solute carrier family 7 member 11(SLC7A11)and glutathione peroxidase 4(GPX4).To improve the delivery efficiency of RSV,a biomimetic nanocarrier was developed by coating RSV-loaded poly(ε-caprolactone)-poly(ethylene glycol)(PCL-PEG)nanoparticles with erythrocyte membrane(RSV-NPs@RBCm).The RSV-NPs@RBCm provide the possibility to escape macrophage phagocytosis and have a long circulation effect.In addition,when coupled with a tumor-penetrating peptide iRGD,which could trigger enhanced tissue penetration tumor-specifically,the delivery of RSV-NPs@RBCm into tumors would be significantly improved results from the in vivo study demonstrated an excellent treatment efficacy for CRC.Altogether,our study highlighted the therapeutic potential of RSV as a ferroptosis-inducing anticancer agent and when loaded into a biomimetic nanoplatform,it might pave the way for the application of RSV loaded nanosystems for colorectal cancer treatment.
基金the Natural Science Foundation of Hunan Province(2019JJ50475)Key Scientific Research Projects of Hunan Education Department(18A448)Foundation of Hunan Double First-rate Discipline Construction Pr ojects of Bioengineering and Key Lab oratory of Resea rch and Utilizati on of Ethnomedicinal Plant Resources of Hunan Province,and the National Science Foundation(81874334).
文摘Akebia trifoliata subsp.australis is a well-known medicinal and potential woody oil plant in China.The limited genetic information available for A.trifoliata subsp.australis has hindered its exploitation.Here,a high-quality chromosomelevel genome sequence of A.trifoliata subsp.australis is reported.The de novo genome assembly of 682.14 Mb was generated with a scaffold N50 of 43.11 Mb.The genome includes 25,598 protein-coding genes,and 71.18%(485.55 Mb)of the assembled sequences were identi fi ed as repetitive sequences.An ongoing massive burst of long terminal repeat(LTR)insertions,which occurred~1.0 million years ago,has contributed a large proportion of LTRs in the genome of A.trifoliata subsp.australis.Phylogenetic analysis shows that A.trifoliata subsp.australis is closely related to Aquilegia coerulea and forms a clade with Papaver somniferum and Nelumbo nucifera,which supports the well-established hypothesis of a close relationship between basal eudicot species.The expansion of UDP-glucoronosyl and UDP-glucosyl transferase gene families and fi-amyrin synthase-like genes and the exclusive contraction of terpene synthase gene families may be responsible for the abundant oleanane-type triterpenoids in A.trifoliata subsp.australis.Furthermore,the acyl-ACP desaturase gene family,including 12 stearoyl-acyl-carrier protein desaturase(SAD)genes,has expanded exclusively.A combined transcriptome and fatty-acid analysis of seeds at fi ve developmental stages revealed that homologs of SADs,acyl-lipid desaturase omega fatty acid desaturases(FADs),and oleosins were highly expressed,consistent with the rapid increase in the content of fatty acids,especially unsaturated fatty acids.The genomic sequences of A.trifoliata subsp.australis will be a valuable resource for comparative genomic analyses and molecular breeding.
基金The research project was supported by the Natural Science Foundation of China(Grant Nos.51972209,41801033,41801043)Young doctor Foundation of Education Department of Gansu Province(2021QB-039)+1 种基金Basic Research Innovation Group of Gansu Province(20JR5RA478)Industrial Support Program of Higher Education of Gansu Province(2020C−40).
文摘Thermal insulation is an important indicator to evaluate the construction material in cold region engineering.As we know,adding the industrial waste as lightweight aggregate or creating the pore inside the cement-based composite could make the texture loose,and the thermal insulating capacity of the material would be improved with this texture.Using these methods,the industrial by-product and engineering waste could be cycled in an efficient way.Moreover,after service the fragmented cement composites paste could be used as aggregate in the thermal insulating concrete again.While the porous texture is not favorable for the mechanical strength and long-term durability in a cold environment.To balance the above three requirements from two opposite directions,different processing methods were applied to create the thermal insulation concrete/mortar.Firstly,the organic/inorganic lightweight aggregate,including the Expanded Polystyrene(EPS),Expanded Perlite(EP),and Ceramsite(CRMST)particles,were applied to create the Lightweight Aggregate Concrete(LWAC).As the comparative tests,the expanded Superabsorbent Polymer(SAP)hydrogel and Air-Entraining Agent(AEA)were also introduced to create the porous mortar.The above concrete/mortar was tested in the normal state and under the Freeze-Thaw cycle to explore the engineering performance in cold regions.During the experimenting process,the thermal insulation,mechanical strength,and frost resistance of these cement-based composites were investigated,and an optimal thermal insulation concrete/mortar was determined.
基金Supported by Project for Introduction and Training of High-Level Technological Talents of Yunnan Province(2009CI126)New Product Program of Yunnan Province(2011BB002)Project for Construction of Science and Technology Innovation Platform of Yunnan Province(2013DH006)
文摘Breeding sterile lines is the key to the development of hybrid rice with wide adaptability. However, at present, few wide-adaptability sterile lines have been applied in production practice. In this study, Yungu 3A, a new WA-type Indica CMS line with good grain quality, was developed by hybridization between Yunfeng 66A with wide adaptability as female parent and F1 plants of Yunfeng 66B/D62B as male parent and continuous backcrossing. According to the results, the finally obtained lndica CMS line Yungu 3A has good plant type and leaf shape, strong tillering ability, excellent flowering habit, stable and complete male sterility with the sterile plant rate and pollen sterility rate of 100%, strong combining ability, high outcrossing rate, low sensitivity to light and temperature, and strong disease resistance, which was approved by Yunnan Provincial Crop Variety Appraisal Committee in 2013. Yungu 3A is conducive to the development of new hybrid rice combinations with good quality and wide adaptability, exhibiting a promising prospect of application.
基金Supported by Plan for the Construction of Technological Innovation Platform of Yunnan Province(2013DH006)Key Project of New Product Development in Yunnan Province(Agriculture)(2013BB004)Science and Technology Cooperation Project between Yunnan Province and University(2014IB012)
文摘In this study,records published by General Administration of Quality Supervision,Inspection and Quarantine of China and related literature on harmful organisms intercepted from imported seeds and seedlings during 2011-2014 were investigated and analyzed.The results showed that the species and amount of harmful organisms intercepted from imported seeds and seedlings increased gradually during 2011-2014,which posed a realistic or potential threat to agriculture production in China.Based on the present situation,corresponding suggestions and countermeasures were proposed:1 strengthening the study on rapid detection technology of harmful organisms;2 improving the ability of animal and plant quarantine in China.
基金supported by the National Natural Science Foundation of China(No.52105211)the Research Fund of the State Key Laboratory of Solidification Processing of NPU,China(No.2023-TS-04)the Fundamental Research Funds for the Central Universities of China(No.3102019JC001).
文摘Fretting wear damage of high-strength titanium fasteners has caused a large number of disastrous accidents.Traditionally,it is believed that both high strength and excellent ductility can reduce fretting wear damage.However,whether strength and ductility are contradictory or not and their appropriate matching strategy under the external applied normal stress(Fw)are still confusing problems.Here,by analyzing the subsurface-microstructure deformation mechanism of several samples containing variousαprecipitate features,for the first time,we design strategies to improve fretting damage resistance under different matching relation between Fw and the tensile strength of materials(Rm).It is found that when Fw is greater than Rm or Fw is nearly equivalent to Rm,the deformation mechanism mainly manifests as serious grain fragmentation ofβandαGB constituents.Homogeneous deformation in large areas only reduces damage to a limited extent.It is crucial to improve the strength to resist cracking and wear,but it is of little significance to improve the ductility.However,when Fw is far less than Rm,coordinated deformation ability reflected by ductility plays a more important role.The deformation mechanism mainly manifests as localized deformation ofβandαGB constituents(kinking induced by twinning and spheroidizing).A unique composite structure of nano-grained/lamellar layer and localized deformation transition layer reduces fretting damage by five times compared with a single nanograined layer.Only when the strength is great enough,improving the plasticity can reduce wear.This study can provide a principle for designing fretting damage resistant alloys.
基金supported by the Innovation Research Group Project in Universities of Chongqing of China(No.CXQT19018)the National Natural Science Foundation of China(Grant No.11971085)+1 种基金he Natural Science Foundation of Chongqing(Grant Nos.cstc2021jcyj-jqX0011 and cstc2020jcyj-msxm0777)an open project of Key Laboratory for Optimization and Control Ministry of Education,Chongqing Normal University(Grant No.CSSXKFKTM202006)。
文摘A Nitsche-based element-free Galerkin(EFG)method for solving semilinear elliptic problems is developed and analyzed in this paper.The existence and uniqueness of the weak solution for semilinear elliptic problems are proved based on a condition that the nonlinear term is an increasing Lipschitz continuous function of the unknown function.A simple iterative scheme is used to deal with the nonlinear integral term.We proved the existence,uniqueness and convergence of the weak solution sequence for continuous level of the simple iterative scheme.A commonly used assumption for approximate space,sometimes called inverse assumption,is proved.Optimal order error estimates in L 2 and H1 norms are proved for the linear and semilinear elliptic problems.In the actual numerical calculation,the characteristic distance h does not appear explicitly in the parameterβintroduced by the Nitsche method.The theoretical results are confirmed numerically。
基金the U.S.Department of Energy(DOE)Office of Electricity under contract No.57558PNNL is an operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830.
文摘In the majority of rechargeable batteries including lithium-ion batteries,polyvinylidene fluoride(PVdF)binders are the most commonly used binder for both anode and cathode.However,using PVdF binder requires the organic solvent of N-methyl-2-pyrrolidone which is expensive,volatile,combustible,toxic,and has poor recyclability.Therefore,switching to aqueous electrode processing routes with non-toxic binders would provide a great leap forward towards the realization of ideally fully sustainable and environmentally friendly electrochemical energy storage devices.Various water-soluble binders(aqueous binders)were characterized and compared to the performance of conventional PVdF.Our study demonstrates that the electrochemical performance of Zn/MnO_(2) aqueous batteries is significantly improved by using sodium carboxymethyl cellulose(CMC)binder.In addition,CMC binders offer desirable adhesion,good wettability,homogeneous material distribution,and strong chemical stability at certain pH levels(3.5-5)without any decomposition for long-cycle life.
文摘In solid basic catalysis field,how to achieve optimized activity and desired stability through elaborate control over basic site properties remains a challenge.In this work,taking advantage of the structure memory effect of layered double hydroxides(LDHs),rehydrated Ca4 Al1-x Gax-LDHs and Ca4 Al1-x Inx-LDHs catalysts were prepared and applied in aldol condensation reaction that isobutyraldehyde(IBD)reacts with formaldehyde(FA)to obtain hydroxypivalaldehyde(HPA).Notably,the resulting re-Ca4 Al0.90Ga0.10-LDHs exhibits an extraordinarily-high catalytic activity(HPA yield:72%),which is to our best knowledge the highest level in this reaction.The weak Br?nsted basic site,7-coordinated Ca-OH group,which serves as an active site,catalyzes the condensation process and promotes the product desorption.Studies on structure-property correlations demonstrate that Ga as a structural promoter induces a moderate expansion of the laminate lattice,which results in a significant increase in the concentration of weak basic sites in re-Ca4Al0.90Ga0.10-LDHs,accounting for its high catalytic activity.This work illuminates that geometric structure of basic active sites can be tuned via introducing catalyst additive,which leads to a largely improved performance of hydrotalcite solid basic catalysts towards aldol condensation reaction.
基金supported by National Energy R&D Center of Petroleum Refining Technology of China(RIPP,SINOPEC)National Key Research and Development Program of China(No.2017YFA0304203)+5 种基金Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT_17R70)National Natural Science Foundation of China(Nos.61975103,61875108,61775125 and 11434007)Industrial Application Innovation Project(No.627010407)Scientific and Technological Innovation Project of Shanxi Gemeng US-China Clean Energy R&D Center Co.,Ltd111 Project(D18001)Fund for Shanxi‘1331KSC’。
文摘Although laser-induced breakdown spectroscopy(LIBS),as a fast on-line analysis technology,has great potential and competitiveness in the analysis of chemical composition and proximate analysis results of coal in thermal power plants,the measurement repeatability of LIBS needs to be further improved due to the difficulty in controlling the stability of the generated plasmas at present.In this paper,we propose a novel x-ray fluorescence(XRF) assisted LIBS method for high repeatability analysis of coal quality,which not only inherits the ability of LIBS to directly analyze organic elements such as C and H in coal,but also uses XRF to make up for the lack of stability of LIBS in determining other inorganic ash-forming elements.With the combination of elemental lines in LIBS and XRF spectra,the principal component analysis and the partial least squares are used to establish the prediction model and perform multi-elemental and proximate analysis of coal.Quantitative analysis results show that the relative standard deviation(RSD) of C is 0.15%,the RSDs of other elements are less than 4%,and the standard deviations of calorific value,ash content,sulfur content and volatile matter are 0.11 MJ kg,0.17%,0.79% and 0.41%respectively,indicating that the method has good repeatability in determination of coal quality.This work is helpful to accelerate the development of LIBS in the field of rapid measurement of coal entering the power plant and on-line monitoring of coal entering the furnace.
文摘Objective: The purposes of this study were to assess the efficacy of allogeneic hematopoietic stem cell transplantation (HSCT) for acute leukemia (AL) and analyze the factors affecting the prognosis of these patients. Methods: The clinical and follow-up data of 93 AL patients (median age, 30 years) undergoing allogeneic HSCT in Xiangya Hospital over the past 12 years were collected, and the potential factors affecting the efficacy and prognosis of allogeneic HSCT patients were determined. Results: Hematopoietic reconstitution was achieved in 90 patients. At the last follow-up, the incidences of severe acute graft versus host disease (aGvHD) and extensive chronic GvHD (cGvHD) were 14.0% and 20.0%, the 3-year cumulative incidence of transplantation related mortality (TRM) and relapse rate were 16.8%±6.1% and 21.3%±6.7%, and the estimated 3-year overall survival (OS) and disease-free survival (DFS) of the patients were 64.6%±5.4% and 56.5%±5.5%, respectively. Univariate analysis indicated that age older than 40 years, HLA mismatch, and severe lung infection within the first 100 days after transplantation were risk factors for severe aGvHD, age older than 40 years, HLA mismatch, severe lung infection within the first 100 days after transplantation, and severe aGvHD were risk factors for TRM, high-risk AL and lack of cGvHD were risk factors for relapse (all P〈0.05). Survival estimation showed that HLA mismatch, severe lung infection occurring within the first 100 days post-transplantation, high-risk AL severe aGvHD and lack of cGvHD were risk factors associated with poor prognosis (all P〈0.05). Further multivariate analyses revealed that severe lung infection within the first 100 days post-transplantation, severe aGvHD and lack of cGvHD were independent risk factors for unfavorable outcomes (all P〈0.05). Conclusions: Allogeneic HSCT can improve the DFS of AL patients, and severe lung infection within the first 100 days post-transplantation, severe aGvHD and lack of cGvHD are independent risk factors affecting the prognosis.
基金Supported by the National Natural Science Foundation of China(6160303040,61433003)Yunnan Applied Basic Research Project of China(201701CF00037)Yunnan Provincial Science and Technology Department Key Research Program(Engineering)(2018BA070)
文摘A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically. In our method, candidate regions are generated using the salient detection in each frame and then classified by an eural network. A kernelized correlation filter(KCF) is employed to track each target until it disappears or the peak-sidelobe ratio is lower than a threshold. Besides, we define the birth and death of each tracker for the targets. The tracker is recycled if its target disappears and can be assigned to a new target. The algorithm is evaluated on the PAFISS and UAV123 datasets. The results show a good performance on both the tracking accuracy and speed.