To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with ...To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with the generalized HB(GHB)criterion and inherits the parameter advantages of GHB.Two new parameters,b,and n,were introduced into the NGHB criterion that primarily controls the deviatoric plane shape of the NGHB criterion under triaxial tension and compression,respectively.The NGHB criterion can consider the influence of intermediate principal stress(IPS),where the deviatoric plane shape satisfies the smoothness requirements,while the HB criterion not.This criterion can degenerate into the two modified 3D HB criteria,the Priest criterion under triaxial compression condition and the HB criterion under triaxial compression and tension condition.This criterion was verified using true triaxial test data for different parameters,six types of rocks,and two kinds of in situ rock masses.For comparison,three existing 3D HB criteria were selected for performance comparison research.The result showed that the NGHB criterion gave better prediction performance than other criteria.The prediction errors of the strength of six types of rocks and two kinds of in situ rock masses were in the range of 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.The proposed criterion lays a preliminary theoretical foundation for prediction of engineering rock mass strength under complex in situ stress conditions.展开更多
Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.H...Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.Here,we propose a novel bioinspired strategy to construct a spontaneously formed‘skin’on the slippery hydrogels by incorporating biological stress metabolites trehalose into the hydrogel network,which can generate robust hydrogen bonding interactions to restrain water evaporation.The contents of trehalose in hydrogel matrix can also regulate the desiccation-tolerance,mechanical properties,and lubricating performance of slippery hydrogels in a wide range.Combining vat photopolymerization three-dimensional printing and trehalose-modified slippery hydrogels enables to achieve the structural hydrogels with high resolution,shape fidelity,and sophisticated architectures,instead of structural collapse and shrinkage deformation caused by dehydration.And thus,this proposed functional hydrogel adapts to manufacture large-scale hydrogels with sophisticated architectures in a long-term process.As a proof-of-concept demonstration,a high-precision and sophisticated slippery hydrogel vascular phantom was easily fabricated to imitate guidewire intervention.Additionally,the proposed protocol is universally applicable to diverse types of hydrogel systems.This strategy opens up a versatile methodology to fabricate dry-resistant slippery hydrogel for functional structures and devices,expanding their high-precision processing and broad applications in the atmosphere.展开更多
Chinese yam(Dioscorea opposita Thunb.),as one of the medicinal and edible homologous plants,is rich in various nutrients and functional factors.In this study,Chinese yam fermented by Saccharomyces boulardii was perfor...Chinese yam(Dioscorea opposita Thunb.),as one of the medicinal and edible homologous plants,is rich in various nutrients and functional factors.In this study,Chinese yam fermented by Saccharomyces boulardii was performed to investigate its bioactive components and metabolic profile.And then,the main bioactive components and biological activities of fermented Chinese yam ethanol extract(FCYE)were evaluated.Results showed that there were 49 up-regulated metabolites and 52 down-regulated metabolites in fermented Chinese yam compared to unfermented Chinese yam.Besides,corresponding metabolic pathways analysis initially revealed that the distribution of bioactive substances was concentrated on alcoholsoluble small molecular substances.Ulteriorly,the total polyphenol content and the total flavonoid content in FCYE were significantly increased,and the corresponding antioxidant and immunomodulatory activities in vitro were also significantly enhanced.Our study provided a new reference for the comprehensive utilization of Chinese yam and laid a theoretical foundation for the development and application of natural probiotic-fermented products.展开更多
Complex-shaped optical lenses are of great interest in the areas of laser processing,machine vision,and optical communications.Traditionally,the processing of complex optical lenses is usually achieved by precision ma...Complex-shaped optical lenses are of great interest in the areas of laser processing,machine vision,and optical communications.Traditionally,the processing of complex optical lenses is usually achieved by precision machining combined with post-grinding or polishing,which is expensive,labor-intensive and difficult in the processing of ultra-complex optical lenses.Additive manufacturing is an emerging technology that provides significant advantages in producing highly intricate optical devices.However,the layer-by-layer method employed in such manufacturing processes has resulted in low printing speeds,as well as limitations in surface quality.To address these challenges,we apply tomographic volumetric printing(TVP)in this work,which can realize the integrated printing of complex structural models without layering.By coordinating the TVP and the meniscus equilibrium post-curing methods,ultra-fast fabrication of complex-shaped lenses with sub-nanometric roughness has been achieved.A2.5 mm high,outer diameter 9 mm spherical lens with a roughness value of RMS=0.3340 nm is printed at a speed of 3.1×10^(4)mm^(3)h^(-1).As a further demonstration,a complex-shaped fly-eye lens is fabricated without any part assembly.The designed spherical lens is mounted on a smartphone’s camera,and the precise alignments above the circuit board are captured.Upon further optimization,this new technology demonstrates the potential for rapid fabrication of ultra-smooth complex optical devices or systems.展开更多
This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fa...This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.展开更多
Previous studies have demonstrated that electroacupuncture therapy is effective in the treatment of irritable bowel syndrome. However, the precise mechanism of this therapy is unknown. The present study served to inve...Previous studies have demonstrated that electroacupuncture therapy is effective in the treatment of irritable bowel syndrome. However, the precise mechanism of this therapy is unknown. The present study served to investigate the effects of electroacupuncture therapy on treatment of patients with diarrhea-predominant irritable bowel syndrome (IBS). We compared brain activation maps based on the changes of cerebral glucose metabolism obtained by 18-fluorodeoxyglucose positron emission tomography scanning under three conditions: resting, rectal balloon distension and rectal balloon distension plus electroacupuncture. Under the resting condition, compared with healthy controls, IBS patients displayed an increasing regional cerebral metabolic rate of glucose over a wide range: bilateral superior temporal gyrus, right middle occipital gyrus, superior frontal gyrus and bilateral middle frontal gyrus. However, there was no significant activity in the visceral pain center. Compared with the resting condition, under the rectal balloon distension condition, patients with IBS had a greater regional cerebral metabolic rate of glucose in the prefrontal cortex, left anterior cingulate cortex, postcentral gyrus, precentral gyrus and temporal gyrus. Under the rectal balloon distension plus electroacupuncture condition, stimulation by electroacupuncture at Tianshu (ST 25) manifested a decreased regional cerebral metabolic rate of glucose in the left cingulate gyrus, right insula, right caudate nucleus, fusiform gyrus and hippocampal gyrus. Electroacupuncture therapy relieved abdominal pain, distension or discomfort by decreasing glucose metabolism in the brain.展开更多
The development of efficient and stable non-mercury catalysts for the chlor-alkali industry is desirable but remains a great challenge.Herein,we design a series of ruthenium catalysts for acetylene hydrochlorination b...The development of efficient and stable non-mercury catalysts for the chlor-alkali industry is desirable but remains a great challenge.Herein,we design a series of ruthenium catalysts for acetylene hydrochlorination by regulating the electronic structure of ruthenium ions through coordination with various ligands(thiourea,phenanthroline,and L-lactic).The turnover frequencies(TOFs)and apparent activation energies for the acetylene hydrochlorination have a linear relationship with the binding energy of Ru3+in the ruthenium catalysts.The synergetic effect of the ruthenium ion and ligands plays an important role in acetylene hydrochlorination.The Ru-Thi/AC catalyst with thiourea as the ligand shows the highest TOF and stability in acetylene hydrochlorination.The present study provides a rational method to regulate the electronic structure of supported metal catalysts with high catalytic performance exhibited by the carbon-supported heterogeneous catalysts.展开更多
Maternal undernutrition or overnutrition during pregnancy alters organ structure, impairs prenatal and neonatal growth and development, and reduces feed efficiency for lean tissue gains in pigs. These adverse effects ...Maternal undernutrition or overnutrition during pregnancy alters organ structure, impairs prenatal and neonatal growth and development, and reduces feed efficiency for lean tissue gains in pigs. These adverse effects may be carried over to the next generation or beyond. This phenomenon of the transgenerational impacts is known as fetal programming, which is mediated by stable and heritable alterations of gene expression through covalent modifications of DNA and histones without changes in DNA sequences(namely, epigenetics). The mechanisms responsible for the epigenetic regulation of protein expression and functions include chromatin remodeling; DNA methylation(occurring at the 5′-position of cytosine residues within CpG dinucleotides); and histone modifications(acetylation, methylation, phosphorylation, and ubiquitination). Like maternal malnutrition, undernutrition during the neonatal period also reduces growth performance and feed efficiency(weight gain:feed intake; also known as weightgain efficiency) in postweaning pigs by 5–10%, thereby increasing the days necessary to reach the market bodyweight. Supplementing functional amino acids(e.g., arginine and glutamine) and vitamins(e.g., folate) play a key role in activating the mammalian target of rapamycin signaling and regulating the provision of methyl donors for DNA and protein methylation. Therefore, these nutrients are beneficial for the dietary treatment of metabolic disorders in offspring with intrauterine growth restriction or neonatal malnutrition. The mechanism-based strategies hold great promise for the improvement of the efficiency of pork production and the sustainability of the global swine industry.展开更多
We recently reported an N‐doped mesoporous carbon(N‐MC)extrudate,with major quaternary N species,prepared by a cheap and convenient method through direct carbonization of wheat flour with silica,which has excellent ...We recently reported an N‐doped mesoporous carbon(N‐MC)extrudate,with major quaternary N species,prepared by a cheap and convenient method through direct carbonization of wheat flour with silica,which has excellent catalytic performance in acetylene hydrochlorination.Herein,we examined the activity of Au supported on N‐MC(Au/N‐MC)and compared it with that of Au supported on nitrogen‐free mesoporous carbon(Au/MC).The acetylene conversion of Au/N‐MC was 50%at 180°C with an acetylene space velocity of 600 h–1 and VHCl/VC2H2 of 1.1,which was double the activity of Au/MC(25%).The introduced nitrogen atoms acted as anchor sites that stabilized the Au3+species and inhibited the reduction of Au3+to Au0 during the preparation of Au/N‐MC catalysts.展开更多
Protein kinases(PKs)have evolved as the largest family of molecular switches that regulate protein activities associated with almost all essential cellular functions.Only a fraction of plant PKs,however,have been func...Protein kinases(PKs)have evolved as the largest family of molecular switches that regulate protein activities associated with almost all essential cellular functions.Only a fraction of plant PKs,however,have been functionally characterized even in model plant species.In the present study,the entire grapevine kinome was identified and annotated using the most recent version of the grapevine genome.A total of 1168 PK-encoding genes were identified and classified into 20 groups and 121 families,with the RLK-Pelle group being the largest,with 872 members.The 1168 kinase genes were unevenly distributed over all 19 chromosomes,and both tandem and segmental duplications contributed to the expansion of the grapevine kinome,especially of the RLK-Pelle group.Ka/Ks values indicated that most of the tandem and segmental duplication events were under purifying selection.The grapevine kinome families exhibited different expression patterns during plant development and in response to various stress treatments,with many being coexpressed.The comprehensive annotation of grapevine kinase genes,their patterns of expression and coexpression,and the related information facilitate a more complete understanding of the roles of various grapevine kinases in growth and development,responses to abiotic stress,and evolutionary history.展开更多
Cold atmospheric plasma shows a satisfactory ability to inactivate bacterial biofilms that are difficult to remove using conventional methods in some cases. However, the researches on the inactivation mechanism are no...Cold atmospheric plasma shows a satisfactory ability to inactivate bacterial biofilms that are difficult to remove using conventional methods in some cases. However, the researches on the inactivation mechanism are not quite sufficient. Poly-β-1–6-N-acetylglucosamine(PNAG),which is one of the important components in some biofilms, was used as the research subject,and the related mechanism of action triggered by different concentrations of the OH in plasma was studied using reactive molecular dynamics simulations. The results showed that OH radicals could not only trigger the hydrogen abstraction reaction leading to cleavage of the PNAG molecular structure, but undergo an OH addition reaction with PNAG molecules. New reaction pathways appeared in the simulations as the OH concentration increased, but the reaction efficiency first increased and then decreased. The simulation study in this paper could, to some extent, help elucidate the microscopic mechanism of the interaction between OH radicals in plasma and bacterial biofilms at the atomic level.展开更多
Increasing concern with regard to food safety in the presence of pesticide residues(PRs) on the surface of agricultural products has resulted in the rapid development of practical degrading technologies for correspond...Increasing concern with regard to food safety in the presence of pesticide residues(PRs) on the surface of agricultural products has resulted in the rapid development of practical degrading technologies for corresponding PRs. In this paper, an unconventional method of degrading pesticides, non-thermal atmospheric plasma(NTAP), was proposed to degrade the avermectin(AVM) in aqueous solution. Optical emission spectroscopy shows that NTAP, consisting of filamentary streamers, contains a variety of reactive oxygen species(ROS) that may interact with AVM. The high-performance liquid chromatography(HPLC)-MS/MS results indicate that the efficiency of AVM degradation seriously depends on multiple operation parameters of the NTAP,including the applied voltage, treatment time and gas flow rate. The maximum degradation rate of AVM was observed to be 97.47% after 240 s exposure under NTAP with an applied voltage of 18 kV and gas flow rate of 1 l min-1. Molecular dynamics simulation based on a reactive force field for the interaction between O(ground state atomic oxygen) and AVM was performed to analyze the underpinning mechanisms. The simulation result shows the possible pathways of the NTAPgenerated O degrading AVM by destroying the glycosyl group or fracturing the ester group.展开更多
Methanol steam reforming(MSR) is an attractive approach to produce hydrogen for fuel cells.Due to the limited catalyst loading volume and frequent start-ups and shut-downs on board,it is highly desired to develop an e...Methanol steam reforming(MSR) is an attractive approach to produce hydrogen for fuel cells.Due to the limited catalyst loading volume and frequent start-ups and shut-downs on board,it is highly desired to develop an extremely active and robust catalyst.Herein,on the basis of industrial Cu/ZnO/Al_(2) O_(3) catalysts,a series of CuZnAl-xMg catalysts with enhanced Cu-ZnO synergy were synthesized via magnesium assisted strategy.The incorporation of magnesium was found to be beneficial to the enhancement of catalytic activity and stability of catalyst.A combination of complementa ry characterizations(e.g.XRD,H_(2)-TPR,N_(2) O chemisorption,TEM,XPS analysis etc.) proves that isomorphous substitution of Cu^(2+)in malachite phase gives rise to more dispersive Cu and ZnO NPs,and the increased Cu^(+)/Cu~0 ratio indicates the strengthened Cu-ZnO synergy effect,which leads to the boosted stability during the thermal treatment.展开更多
The objective of this work is to contribute an understanding of the effects of electrons in the plasmas on the mass transfer of plasma species in aqueous solution by means of the numerical simulation based on a one-di...The objective of this work is to contribute an understanding of the effects of electrons in the plasmas on the mass transfer of plasma species in aqueous solution by means of the numerical simulation based on a one-dimensional diffusion-reaction model.The plasma species are divided into two groups,i.e.electrons and the other species,and the mass transfer in the three scenarios has been simulated,including the systematic calculations of the depth distributions of five major reactive species,OH,O3,HO2,O2^-,and H2O2.In the three scenarios,the particles considered to enter into aqueous solution are all the plasma species(the scenario Ⅰ,where the mass transfer of plasma species is a result due to the synergy of the electrons and the other plasma species),the other species(the scenario Ⅱ),and only electrons in plasma species(the scenario Ⅲ),respectively.The detailed analyses on the difference between the depth distributions of each reactive species in these three scenarios show the following conclusions.The electrons play an important role in the mass transfer of plasma species in aqueous solution and the synergy of the electrons and the other plasma species(the electron-species synergy)presents its different effects on the mass transfer.The vast majority of H2O2 are generated from a series of the electronrelated reactions in aqueous solution,which is hardly affected by the electron-species synergy.Compared to the results when only the electrons enter into the liquid region,the electron-species synergy evidently weakens the generation of O2^-,O3,and OH,but promotes to produce HO2.展开更多
It’s common that different individuals share the same name, which makes it time-consuming to search information of a particular individual on the web. Name disambiguation study is necessary to help users find the per...It’s common that different individuals share the same name, which makes it time-consuming to search information of a particular individual on the web. Name disambiguation study is necessary to help users find the person of interest more readily. In this paper, we propose an Adaptive Resonance Theory (ART) based two-stage strategy for this problem. We get a first-stage clustering result with ART1 model and then merge similar clusters in the second stage. Our strategy is a mimic process of manual disambiguation and need not to predict the number of clusters, which makes it competent for the disambiguation task. Experimental results show that, in comparison with the agglomerative clustering method, our strategy improves the performance by respectively 0.92% and 5.00% on two kinds of name recognition results.展开更多
Pearl River Mouth Basin undergoes complex tectonic evolution processes and forms lacustrine,transitional and marine sediments.Drilling shows that there exist large petroleum reserves in the hydrocarbon-rich sags of Pe...Pearl River Mouth Basin undergoes complex tectonic evolution processes and forms lacustrine,transitional and marine sediments.Drilling shows that there exist large petroleum reserves in the hydrocarbon-rich sags of Pearl River Mouth Basin,South China Sea.To reduce the risk,the exploration,structural and sedimentary characteristics of the hydrocarbon-rich sags should be identified and described.Drilling,seismic,and microfossil data are integrated to interpret the structural and sedimentary evolution of the hydrocarbon-rich sags in Pearl River Mouth Basin.By analyzing the tectonic and sedimentary evolutionary characteristics,three conclusions may be drawn:1、The present regional tectonic characteristics of the PRMB are formed by mutual interactions of the Eurasian Plate,Pacific Plate,Philippine Plate and Indian Plate.During the Paleocene to early Eocene and late Eocene and early Oligocene,the PRMB is at the rifting stage.During the late Oligocene,the PRMB was at the rifting-depression transitional stage.After the Oligocene,the PRMB is at the depression stage.2、Tectonic conditions control the sedimentation process in the hydrocarbon-rich sags.During the lacustrine sedimentation stage,synsedimentary faults and intense faulting control the sedimentation.During the transitional sedimentation stage,weak fault activity influences the deposition process in the hydrocarbon-rich sags.During the marine sedimentation stage,weak fault activity and depression activity control the deposition process in the hydrocarbon-rich sags.3、Tectonic evolution affects the deposition process.The lacustrine,transitional and marine sedimentation corresponds to different tectonic conditions.The lacustrine sedimentation is formed under fault activity during the rifting stage.The transitional sedimentation is formed under weak fault activity during the late rifting stage.The marine sedimentation is formed under weak fault activity and depression activity during the rifting-depression and depression stages.4、The half graben is beneficial for the formation of lacustrine source rocks,which is responsible for the hydrocarbon-rich sag.Therefore the half graben mode contributes to the hydrocarbon-rich sags.展开更多
Background: Time-restricted feeding(TRF) is a dieting strategy based on nutrients availability and diurnal rhythm,shown to improve lipid metabolism efficiency. We have demonstrated previously that retinoic acid-relate...Background: Time-restricted feeding(TRF) is a dieting strategy based on nutrients availability and diurnal rhythm,shown to improve lipid metabolism efficiency. We have demonstrated previously that retinoic acid-related(RAR)orphan receptor(ROR) γ is the primary transcription factor controlling cholesterol(CHO) biosynthesis program of animals. However, the functional role of RORγ in liver physiology of pigs in response to TRF has not been determined, largely due to the lack of functional models and molecular tools. In the present study, we established porcine liver organoids and subjected them to restricted nutrients supply for 10-h during the light portion of the day.Results: Our results showed that TRF regimen did not alter hepatocyte physiology, including unchanged cell viability, caspase 3/7 enzyme activity and the gene signature of cell proliferation in porcine liver organoids,compared to the control group(P > 0.05). Furthermore, we found that TRF downregulated the hepatic CHO biosynthesis program at both mRNA and protein levels, along with the reduced cellular CHO content in porcine liver organoids(P < 0.05). Using unbiased bioinformatic analysis of a previous ChIP-seq data and ChIP-qPCR validation, we revealed RORγ as the predominant transcription factor that responded to TRF, amongst the 12 targeted nuclear receptors(NRs)(P < 0.05). This was likely through RORγ direct binding to the MVK gene(encoding mevalonate kinase). Finally, we showed that RORγ agonists and overexpression enhanced the enrichment of cofactor p300, histone marks H3 K27 ac and H3K4me1/2, as well as RNA polymerase II(Pol-II) at the locus of MVK, in TRF-porcine liver organoids, compared to TRF-vector control(P < 0.05).Conclusions: Our findings demonstrate that TRF triggers the RORγ-mediated chromatin remodeling at the locus of CHO biosynthesis genes in porcine liver organoids and further improves lipid metabolism.展开更多
The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approxima...The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approximate thenonlinear term of a system, our approach extracts the main part of the nonlinear term with a linear approximation beforeapproximating the residual with the DEIM. We construct the linear term by Taylor series expansion and dynamic modedecomposition (DMD), respectively, so as to obtain a more accurate reconstruction of the nonlinear term. In addition, anovel error prediction model is devised for the POD-DEIM reduced systems by employing neural networks with the aid oferror data. The error model is cheaply computable and can be adopted as a remedy model to enhance the reduction accuracy.Finally, numerical experiments are performed on two nonlinear problems to show the performance of the proposed method.展开更多
Cow mastitis is the most common disease that affects the dairy farming industry and causes serious harm to dairy cows and humans,and Staphylococcus(S.)aureus is one of the main pathogens that cause mastitis in dairy c...Cow mastitis is the most common disease that affects the dairy farming industry and causes serious harm to dairy cows and humans,and Staphylococcus(S.)aureus is one of the main pathogens that cause mastitis in dairy cows.In this study,a mastitis model was established through the infection of bovine mammary epithelial cells(BMECs)with S.aureus(bacterial concentration of 1×10^(9)/mL),and these cells and a blank group(untreated)were analyzed by flow cytometry(10000 cells,200 cells collected per second),hematoxylin and eosin(H&E)staining and immunohistochemistry.In addition,the lncRNAs(long non-coding RNAs)in the normal and S.aureus-infected BMEC group were screened by second-generation sequencing.Flow cytometry,H&E staining,and immunohistochemistry assays were performed to verify the successful construction of an S.aureus infection model in BMECs.A close relationship was found between the differential expression of lncRNAs and S.aureus mastitis.The total original sequencing reads were 627.13 M,and the average reads from each sample were approximately 104.52 M.After removing the unwanted reads,the total clean reads were 606.43 M,and the average reads from each sample were approximately 101.07 M.After S.aureus infection,30 lncRNAs were differentially expressed,and these included 21 upregulated and nine down-regulated lncRNAs.This research will not only expand our understanding of the lncRNA map in dairy cows but also help us hypothesize the function of lncRNAs in the genome and identify novel molecular markers of mastitis.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51934003,52334004)Yunnan Major Scientific and Technological Projects(Grant No.202202AG050014)。
文摘To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with the generalized HB(GHB)criterion and inherits the parameter advantages of GHB.Two new parameters,b,and n,were introduced into the NGHB criterion that primarily controls the deviatoric plane shape of the NGHB criterion under triaxial tension and compression,respectively.The NGHB criterion can consider the influence of intermediate principal stress(IPS),where the deviatoric plane shape satisfies the smoothness requirements,while the HB criterion not.This criterion can degenerate into the two modified 3D HB criteria,the Priest criterion under triaxial compression condition and the HB criterion under triaxial compression and tension condition.This criterion was verified using true triaxial test data for different parameters,six types of rocks,and two kinds of in situ rock masses.For comparison,three existing 3D HB criteria were selected for performance comparison research.The result showed that the NGHB criterion gave better prediction performance than other criteria.The prediction errors of the strength of six types of rocks and two kinds of in situ rock masses were in the range of 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.The proposed criterion lays a preliminary theoretical foundation for prediction of engineering rock mass strength under complex in situ stress conditions.
基金the financial support from the National Key Research and Development Program of China(2022YFB4600101)the National Natural Science Foundation of China(52175201,52005484,and 52205228)+6 种基金the Research Program of Science and Technology Department of Gansu Province(21YF5FA139 and 22JR5RA107)the Shandong Provincial Natural Science Foundation(ZR2023OE090)the Major Program(ZYFZFX-2)the Cooperation Foundation for Young Scholars(HZJJ23-02)of the Lanzhou Institute of Chemical Physics,CASthe Western Light Project,CAS(xbzg-zdsys-202007)the Taishan Scholars Programthe Oasis Scholar of Shihezi University。
文摘Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.Here,we propose a novel bioinspired strategy to construct a spontaneously formed‘skin’on the slippery hydrogels by incorporating biological stress metabolites trehalose into the hydrogel network,which can generate robust hydrogen bonding interactions to restrain water evaporation.The contents of trehalose in hydrogel matrix can also regulate the desiccation-tolerance,mechanical properties,and lubricating performance of slippery hydrogels in a wide range.Combining vat photopolymerization three-dimensional printing and trehalose-modified slippery hydrogels enables to achieve the structural hydrogels with high resolution,shape fidelity,and sophisticated architectures,instead of structural collapse and shrinkage deformation caused by dehydration.And thus,this proposed functional hydrogel adapts to manufacture large-scale hydrogels with sophisticated architectures in a long-term process.As a proof-of-concept demonstration,a high-precision and sophisticated slippery hydrogel vascular phantom was easily fabricated to imitate guidewire intervention.Additionally,the proposed protocol is universally applicable to diverse types of hydrogel systems.This strategy opens up a versatile methodology to fabricate dry-resistant slippery hydrogel for functional structures and devices,expanding their high-precision processing and broad applications in the atmosphere.
基金supported by National Natural Science Foundation of China(32172211)the Natural Science Foundation of Henan Province for Outstanding Youth,China(202300410365)+2 种基金the National Key Research and Development Program of China(2022YFF1103300)the Program for Science and Technology Innovation Talents in Universities of Henan Province(22HASTIT037)the Technology Development(Cooperation)project of Zhengzhou University(20210442A,20210327A).
文摘Chinese yam(Dioscorea opposita Thunb.),as one of the medicinal and edible homologous plants,is rich in various nutrients and functional factors.In this study,Chinese yam fermented by Saccharomyces boulardii was performed to investigate its bioactive components and metabolic profile.And then,the main bioactive components and biological activities of fermented Chinese yam ethanol extract(FCYE)were evaluated.Results showed that there were 49 up-regulated metabolites and 52 down-regulated metabolites in fermented Chinese yam compared to unfermented Chinese yam.Besides,corresponding metabolic pathways analysis initially revealed that the distribution of bioactive substances was concentrated on alcoholsoluble small molecular substances.Ulteriorly,the total polyphenol content and the total flavonoid content in FCYE were significantly increased,and the corresponding antioxidant and immunomodulatory activities in vitro were also significantly enhanced.Our study provided a new reference for the comprehensive utilization of Chinese yam and laid a theoretical foundation for the development and application of natural probiotic-fermented products.
基金supported by the National Natural Science Foundation of China(Grant No.51875253 and No.51935012)the Jiangsu Provincial Key Research and Development Program(BE2022069-2)the Western Light Project of Chinese Academy of Sciences(sbzg-zdsys-202007)。
文摘Complex-shaped optical lenses are of great interest in the areas of laser processing,machine vision,and optical communications.Traditionally,the processing of complex optical lenses is usually achieved by precision machining combined with post-grinding or polishing,which is expensive,labor-intensive and difficult in the processing of ultra-complex optical lenses.Additive manufacturing is an emerging technology that provides significant advantages in producing highly intricate optical devices.However,the layer-by-layer method employed in such manufacturing processes has resulted in low printing speeds,as well as limitations in surface quality.To address these challenges,we apply tomographic volumetric printing(TVP)in this work,which can realize the integrated printing of complex structural models without layering.By coordinating the TVP and the meniscus equilibrium post-curing methods,ultra-fast fabrication of complex-shaped lenses with sub-nanometric roughness has been achieved.A2.5 mm high,outer diameter 9 mm spherical lens with a roughness value of RMS=0.3340 nm is printed at a speed of 3.1×10^(4)mm^(3)h^(-1).As a further demonstration,a complex-shaped fly-eye lens is fabricated without any part assembly.The designed spherical lens is mounted on a smartphone’s camera,and the precise alignments above the circuit board are captured.Upon further optimization,this new technology demonstrates the potential for rapid fabrication of ultra-smooth complex optical devices or systems.
基金supported in part by the National Natural Science Foundation of China(52177042)Natural Science Foundation of Hebei Province(E2020502031)+1 种基金the Fundamental Research Funds for the Central Universities(2017MS151),Suzhou Social Developing Innovation Project of Science and Technology(SS202134)the Top Youth Talent Support Program of Hebei Province([2018]-27).
文摘This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.
基金the National Basic Research Program of China (973 Program),No.2009CB522900the Leading Talents of Medical Science in Shanghai,No.LJ06019the Shanghai Leading Academic Discipline Project,No.S30304
文摘Previous studies have demonstrated that electroacupuncture therapy is effective in the treatment of irritable bowel syndrome. However, the precise mechanism of this therapy is unknown. The present study served to investigate the effects of electroacupuncture therapy on treatment of patients with diarrhea-predominant irritable bowel syndrome (IBS). We compared brain activation maps based on the changes of cerebral glucose metabolism obtained by 18-fluorodeoxyglucose positron emission tomography scanning under three conditions: resting, rectal balloon distension and rectal balloon distension plus electroacupuncture. Under the resting condition, compared with healthy controls, IBS patients displayed an increasing regional cerebral metabolic rate of glucose over a wide range: bilateral superior temporal gyrus, right middle occipital gyrus, superior frontal gyrus and bilateral middle frontal gyrus. However, there was no significant activity in the visceral pain center. Compared with the resting condition, under the rectal balloon distension condition, patients with IBS had a greater regional cerebral metabolic rate of glucose in the prefrontal cortex, left anterior cingulate cortex, postcentral gyrus, precentral gyrus and temporal gyrus. Under the rectal balloon distension plus electroacupuncture condition, stimulation by electroacupuncture at Tianshu (ST 25) manifested a decreased regional cerebral metabolic rate of glucose in the left cingulate gyrus, right insula, right caudate nucleus, fusiform gyrus and hippocampal gyrus. Electroacupuncture therapy relieved abdominal pain, distension or discomfort by decreasing glucose metabolism in the brain.
文摘The development of efficient and stable non-mercury catalysts for the chlor-alkali industry is desirable but remains a great challenge.Herein,we design a series of ruthenium catalysts for acetylene hydrochlorination by regulating the electronic structure of ruthenium ions through coordination with various ligands(thiourea,phenanthroline,and L-lactic).The turnover frequencies(TOFs)and apparent activation energies for the acetylene hydrochlorination have a linear relationship with the binding energy of Ru3+in the ruthenium catalysts.The synergetic effect of the ruthenium ion and ligands plays an important role in acetylene hydrochlorination.The Ru-Thi/AC catalyst with thiourea as the ligand shows the highest TOF and stability in acetylene hydrochlorination.The present study provides a rational method to regulate the electronic structure of supported metal catalysts with high catalytic performance exhibited by the carbon-supported heterogeneous catalysts.
基金supported by the National Basic Research Program of China(2013CB127302)the National Natural Science Foundation of China(31272450 and 31572412)+2 种基金Competitive Grants from the Animal Reproduction Program(no.2014-67015-21770)Animal Growth & Nutrient Utilization Programs(no.2015-67015-23276)of the USDA National Institute of Food and AgricultureTexas A&M AgriL ife Research(H-8200)
文摘Maternal undernutrition or overnutrition during pregnancy alters organ structure, impairs prenatal and neonatal growth and development, and reduces feed efficiency for lean tissue gains in pigs. These adverse effects may be carried over to the next generation or beyond. This phenomenon of the transgenerational impacts is known as fetal programming, which is mediated by stable and heritable alterations of gene expression through covalent modifications of DNA and histones without changes in DNA sequences(namely, epigenetics). The mechanisms responsible for the epigenetic regulation of protein expression and functions include chromatin remodeling; DNA methylation(occurring at the 5′-position of cytosine residues within CpG dinucleotides); and histone modifications(acetylation, methylation, phosphorylation, and ubiquitination). Like maternal malnutrition, undernutrition during the neonatal period also reduces growth performance and feed efficiency(weight gain:feed intake; also known as weightgain efficiency) in postweaning pigs by 5–10%, thereby increasing the days necessary to reach the market bodyweight. Supplementing functional amino acids(e.g., arginine and glutamine) and vitamins(e.g., folate) play a key role in activating the mammalian target of rapamycin signaling and regulating the provision of methyl donors for DNA and protein methylation. Therefore, these nutrients are beneficial for the dietary treatment of metabolic disorders in offspring with intrauterine growth restriction or neonatal malnutrition. The mechanism-based strategies hold great promise for the improvement of the efficiency of pork production and the sustainability of the global swine industry.
基金Zhejiang Provincial Natural Science Foundation of China(LY17B030010)~~
文摘We recently reported an N‐doped mesoporous carbon(N‐MC)extrudate,with major quaternary N species,prepared by a cheap and convenient method through direct carbonization of wheat flour with silica,which has excellent catalytic performance in acetylene hydrochlorination.Herein,we examined the activity of Au supported on N‐MC(Au/N‐MC)and compared it with that of Au supported on nitrogen‐free mesoporous carbon(Au/MC).The acetylene conversion of Au/N‐MC was 50%at 180°C with an acetylene space velocity of 600 h–1 and VHCl/VC2H2 of 1.1,which was double the activity of Au/MC(25%).The introduced nitrogen atoms acted as anchor sites that stabilized the Au3+species and inhibited the reduction of Au3+to Au0 during the preparation of Au/N‐MC catalysts.
基金This research was financially supported in part by the Priority Academic of Jiangsu Province and the Tennessee Agricultural Experiment Station Hatch Project 1009395Kaikai Zhu was supported by the China Scholarship Council(CSC,No.201606850052).
文摘Protein kinases(PKs)have evolved as the largest family of molecular switches that regulate protein activities associated with almost all essential cellular functions.Only a fraction of plant PKs,however,have been functionally characterized even in model plant species.In the present study,the entire grapevine kinome was identified and annotated using the most recent version of the grapevine genome.A total of 1168 PK-encoding genes were identified and classified into 20 groups and 121 families,with the RLK-Pelle group being the largest,with 872 members.The 1168 kinase genes were unevenly distributed over all 19 chromosomes,and both tandem and segmental duplications contributed to the expansion of the grapevine kinome,especially of the RLK-Pelle group.Ka/Ks values indicated that most of the tandem and segmental duplication events were under purifying selection.The grapevine kinome families exhibited different expression patterns during plant development and in response to various stress treatments,with many being coexpressed.The comprehensive annotation of grapevine kinase genes,their patterns of expression and coexpression,and the related information facilitate a more complete understanding of the roles of various grapevine kinases in growth and development,responses to abiotic stress,and evolutionary history.
基金supported by National Natural Science Foundation of China(Grant No.11675095)the Fundamental Research Funds of Shandong University(Grant No.2017JC017)。
文摘Cold atmospheric plasma shows a satisfactory ability to inactivate bacterial biofilms that are difficult to remove using conventional methods in some cases. However, the researches on the inactivation mechanism are not quite sufficient. Poly-β-1–6-N-acetylglucosamine(PNAG),which is one of the important components in some biofilms, was used as the research subject,and the related mechanism of action triggered by different concentrations of the OH in plasma was studied using reactive molecular dynamics simulations. The results showed that OH radicals could not only trigger the hydrogen abstraction reaction leading to cleavage of the PNAG molecular structure, but undergo an OH addition reaction with PNAG molecules. New reaction pathways appeared in the simulations as the OH concentration increased, but the reaction efficiency first increased and then decreased. The simulation study in this paper could, to some extent, help elucidate the microscopic mechanism of the interaction between OH radicals in plasma and bacterial biofilms at the atomic level.
基金National Natural Science Foundation of China (Grant Nos. 11675095 and 52077128)the Fundamental Research Funds of Shandong University (Grant No. 2017JC017) for supporting the research。
文摘Increasing concern with regard to food safety in the presence of pesticide residues(PRs) on the surface of agricultural products has resulted in the rapid development of practical degrading technologies for corresponding PRs. In this paper, an unconventional method of degrading pesticides, non-thermal atmospheric plasma(NTAP), was proposed to degrade the avermectin(AVM) in aqueous solution. Optical emission spectroscopy shows that NTAP, consisting of filamentary streamers, contains a variety of reactive oxygen species(ROS) that may interact with AVM. The high-performance liquid chromatography(HPLC)-MS/MS results indicate that the efficiency of AVM degradation seriously depends on multiple operation parameters of the NTAP,including the applied voltage, treatment time and gas flow rate. The maximum degradation rate of AVM was observed to be 97.47% after 240 s exposure under NTAP with an applied voltage of 18 kV and gas flow rate of 1 l min-1. Molecular dynamics simulation based on a reactive force field for the interaction between O(ground state atomic oxygen) and AVM was performed to analyze the underpinning mechanisms. The simulation result shows the possible pathways of the NTAPgenerated O degrading AVM by destroying the glycosyl group or fracturing the ester group.
基金Natural Science Foundation of Zhejiang Province (LQ21B060007)。
文摘Methanol steam reforming(MSR) is an attractive approach to produce hydrogen for fuel cells.Due to the limited catalyst loading volume and frequent start-ups and shut-downs on board,it is highly desired to develop an extremely active and robust catalyst.Herein,on the basis of industrial Cu/ZnO/Al_(2) O_(3) catalysts,a series of CuZnAl-xMg catalysts with enhanced Cu-ZnO synergy were synthesized via magnesium assisted strategy.The incorporation of magnesium was found to be beneficial to the enhancement of catalytic activity and stability of catalyst.A combination of complementa ry characterizations(e.g.XRD,H_(2)-TPR,N_(2) O chemisorption,TEM,XPS analysis etc.) proves that isomorphous substitution of Cu^(2+)in malachite phase gives rise to more dispersive Cu and ZnO NPs,and the increased Cu^(+)/Cu~0 ratio indicates the strengthened Cu-ZnO synergy effect,which leads to the boosted stability during the thermal treatment.
基金supported by the Fundamental Research Funds of Shandong University(2018TB037)。
文摘The objective of this work is to contribute an understanding of the effects of electrons in the plasmas on the mass transfer of plasma species in aqueous solution by means of the numerical simulation based on a one-dimensional diffusion-reaction model.The plasma species are divided into two groups,i.e.electrons and the other species,and the mass transfer in the three scenarios has been simulated,including the systematic calculations of the depth distributions of five major reactive species,OH,O3,HO2,O2^-,and H2O2.In the three scenarios,the particles considered to enter into aqueous solution are all the plasma species(the scenario Ⅰ,where the mass transfer of plasma species is a result due to the synergy of the electrons and the other plasma species),the other species(the scenario Ⅱ),and only electrons in plasma species(the scenario Ⅲ),respectively.The detailed analyses on the difference between the depth distributions of each reactive species in these three scenarios show the following conclusions.The electrons play an important role in the mass transfer of plasma species in aqueous solution and the synergy of the electrons and the other plasma species(the electron-species synergy)presents its different effects on the mass transfer.The vast majority of H2O2 are generated from a series of the electronrelated reactions in aqueous solution,which is hardly affected by the electron-species synergy.Compared to the results when only the electrons enter into the liquid region,the electron-species synergy evidently weakens the generation of O2^-,O3,and OH,but promotes to produce HO2.
文摘It’s common that different individuals share the same name, which makes it time-consuming to search information of a particular individual on the web. Name disambiguation study is necessary to help users find the person of interest more readily. In this paper, we propose an Adaptive Resonance Theory (ART) based two-stage strategy for this problem. We get a first-stage clustering result with ART1 model and then merge similar clusters in the second stage. Our strategy is a mimic process of manual disambiguation and need not to predict the number of clusters, which makes it competent for the disambiguation task. Experimental results show that, in comparison with the agglomerative clustering method, our strategy improves the performance by respectively 0.92% and 5.00% on two kinds of name recognition results.
基金the National Natural Science Foundation of China(No.41702135)the Yangtze Youth Fund(No.2015qq33),the 13th“Five-year”plan of the Ministry of Science and Technology of China(No.2016ZX05037-002)National Science and Technology Major Project(NO.2016ZX05015-006).
文摘Pearl River Mouth Basin undergoes complex tectonic evolution processes and forms lacustrine,transitional and marine sediments.Drilling shows that there exist large petroleum reserves in the hydrocarbon-rich sags of Pearl River Mouth Basin,South China Sea.To reduce the risk,the exploration,structural and sedimentary characteristics of the hydrocarbon-rich sags should be identified and described.Drilling,seismic,and microfossil data are integrated to interpret the structural and sedimentary evolution of the hydrocarbon-rich sags in Pearl River Mouth Basin.By analyzing the tectonic and sedimentary evolutionary characteristics,three conclusions may be drawn:1、The present regional tectonic characteristics of the PRMB are formed by mutual interactions of the Eurasian Plate,Pacific Plate,Philippine Plate and Indian Plate.During the Paleocene to early Eocene and late Eocene and early Oligocene,the PRMB is at the rifting stage.During the late Oligocene,the PRMB was at the rifting-depression transitional stage.After the Oligocene,the PRMB is at the depression stage.2、Tectonic conditions control the sedimentation process in the hydrocarbon-rich sags.During the lacustrine sedimentation stage,synsedimentary faults and intense faulting control the sedimentation.During the transitional sedimentation stage,weak fault activity influences the deposition process in the hydrocarbon-rich sags.During the marine sedimentation stage,weak fault activity and depression activity control the deposition process in the hydrocarbon-rich sags.3、Tectonic evolution affects the deposition process.The lacustrine,transitional and marine sedimentation corresponds to different tectonic conditions.The lacustrine sedimentation is formed under fault activity during the rifting stage.The transitional sedimentation is formed under weak fault activity during the late rifting stage.The marine sedimentation is formed under weak fault activity and depression activity during the rifting-depression and depression stages.4、The half graben is beneficial for the formation of lacustrine source rocks,which is responsible for the hydrocarbon-rich sag.Therefore the half graben mode contributes to the hydrocarbon-rich sags.
基金supported by the Postgraduate Research&Practice Innovation Program of Yangzhou University (X20200616)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Background: Time-restricted feeding(TRF) is a dieting strategy based on nutrients availability and diurnal rhythm,shown to improve lipid metabolism efficiency. We have demonstrated previously that retinoic acid-related(RAR)orphan receptor(ROR) γ is the primary transcription factor controlling cholesterol(CHO) biosynthesis program of animals. However, the functional role of RORγ in liver physiology of pigs in response to TRF has not been determined, largely due to the lack of functional models and molecular tools. In the present study, we established porcine liver organoids and subjected them to restricted nutrients supply for 10-h during the light portion of the day.Results: Our results showed that TRF regimen did not alter hepatocyte physiology, including unchanged cell viability, caspase 3/7 enzyme activity and the gene signature of cell proliferation in porcine liver organoids,compared to the control group(P > 0.05). Furthermore, we found that TRF downregulated the hepatic CHO biosynthesis program at both mRNA and protein levels, along with the reduced cellular CHO content in porcine liver organoids(P < 0.05). Using unbiased bioinformatic analysis of a previous ChIP-seq data and ChIP-qPCR validation, we revealed RORγ as the predominant transcription factor that responded to TRF, amongst the 12 targeted nuclear receptors(NRs)(P < 0.05). This was likely through RORγ direct binding to the MVK gene(encoding mevalonate kinase). Finally, we showed that RORγ agonists and overexpression enhanced the enrichment of cofactor p300, histone marks H3 K27 ac and H3K4me1/2, as well as RNA polymerase II(Pol-II) at the locus of MVK, in TRF-porcine liver organoids, compared to TRF-vector control(P < 0.05).Conclusions: Our findings demonstrate that TRF triggers the RORγ-mediated chromatin remodeling at the locus of CHO biosynthesis genes in porcine liver organoids and further improves lipid metabolism.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11871400 and 11971386)the Natural Science Foundation of Shaanxi Province,China(Grant No.2017JM1019).
文摘The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approximate thenonlinear term of a system, our approach extracts the main part of the nonlinear term with a linear approximation beforeapproximating the residual with the DEIM. We construct the linear term by Taylor series expansion and dynamic modedecomposition (DMD), respectively, so as to obtain a more accurate reconstruction of the nonlinear term. In addition, anovel error prediction model is devised for the POD-DEIM reduced systems by employing neural networks with the aid oferror data. The error model is cheaply computable and can be adopted as a remedy model to enhance the reduction accuracy.Finally, numerical experiments are performed on two nonlinear problems to show the performance of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.31872324,31802035,and 31601915)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJA230003)+1 种基金Six Talent Peaks Project in Jiangsu Province(NY-093)the China Postdoctoral Science Foundation(Grant Nos.2017M621841 and 2019T120472).
文摘Cow mastitis is the most common disease that affects the dairy farming industry and causes serious harm to dairy cows and humans,and Staphylococcus(S.)aureus is one of the main pathogens that cause mastitis in dairy cows.In this study,a mastitis model was established through the infection of bovine mammary epithelial cells(BMECs)with S.aureus(bacterial concentration of 1×10^(9)/mL),and these cells and a blank group(untreated)were analyzed by flow cytometry(10000 cells,200 cells collected per second),hematoxylin and eosin(H&E)staining and immunohistochemistry.In addition,the lncRNAs(long non-coding RNAs)in the normal and S.aureus-infected BMEC group were screened by second-generation sequencing.Flow cytometry,H&E staining,and immunohistochemistry assays were performed to verify the successful construction of an S.aureus infection model in BMECs.A close relationship was found between the differential expression of lncRNAs and S.aureus mastitis.The total original sequencing reads were 627.13 M,and the average reads from each sample were approximately 104.52 M.After removing the unwanted reads,the total clean reads were 606.43 M,and the average reads from each sample were approximately 101.07 M.After S.aureus infection,30 lncRNAs were differentially expressed,and these included 21 upregulated and nine down-regulated lncRNAs.This research will not only expand our understanding of the lncRNA map in dairy cows but also help us hypothesize the function of lncRNAs in the genome and identify novel molecular markers of mastitis.