Growth and uptake of exogenous phosphate by Microcystis aeruginosa in batch culture under different temperature, photoperiod, and turbulence were studied by the method of phosphate isotope tracer. Relatively high temp...Growth and uptake of exogenous phosphate by Microcystis aeruginosa in batch culture under different temperature, photoperiod, and turbulence were studied by the method of phosphate isotope tracer. Relatively high temperature, long photoperiod and strong turbulence increased the cell density of M. aeruginosa in these batch cultures. The initial rapid uptake of phosphate by M. aeruginosa was independent of the temperature, photoperiod, and turbulence. Similarly, maximum exogenous phosphate uptake was not related to these environmental factors. However, elevated temperature and turbulence shortened the time, required to obtain maximum P accumulation. The growth of M. aeruginosa could alleviate the phosphorous leakage. Total amounts of exogenous phosphate uptake to M. aeruginosa and the phosphorus leakage of M. aeruginosa were significantly influenced by the growth state of M. aeruginosa closely correlated with the environmental factors. The maximum volume of exogenous phosphate uptake to M. aeruginosa was 46% of added exogenous phosphate in water with 16 hours of photoperiod. Thus, total amounts of exogenous phosphate uptake to M. aeruginosa were more strongly affected by the photoperiod length than temperature and turbulence.展开更多
文摘Growth and uptake of exogenous phosphate by Microcystis aeruginosa in batch culture under different temperature, photoperiod, and turbulence were studied by the method of phosphate isotope tracer. Relatively high temperature, long photoperiod and strong turbulence increased the cell density of M. aeruginosa in these batch cultures. The initial rapid uptake of phosphate by M. aeruginosa was independent of the temperature, photoperiod, and turbulence. Similarly, maximum exogenous phosphate uptake was not related to these environmental factors. However, elevated temperature and turbulence shortened the time, required to obtain maximum P accumulation. The growth of M. aeruginosa could alleviate the phosphorous leakage. Total amounts of exogenous phosphate uptake to M. aeruginosa and the phosphorus leakage of M. aeruginosa were significantly influenced by the growth state of M. aeruginosa closely correlated with the environmental factors. The maximum volume of exogenous phosphate uptake to M. aeruginosa was 46% of added exogenous phosphate in water with 16 hours of photoperiod. Thus, total amounts of exogenous phosphate uptake to M. aeruginosa were more strongly affected by the photoperiod length than temperature and turbulence.