The closed form of solutions of Kac-van Moerbeke lattice and self-dual network equations are considered by proposing transformations based on Riccati equation, using symbolic computation. In contrast to the numerical ...The closed form of solutions of Kac-van Moerbeke lattice and self-dual network equations are considered by proposing transformations based on Riccati equation, using symbolic computation. In contrast to the numerical computation of travelling wave solutions for differential difference equations, our method obtains exact solutions which have physical relevance.展开更多
In this paper, a series of two line-soliton solutions and double periodic solutions of Chaffee-Infante equation have been obtained by using a new transformation. Unlike the existing methods which are used to find mult...In this paper, a series of two line-soliton solutions and double periodic solutions of Chaffee-Infante equation have been obtained by using a new transformation. Unlike the existing methods which are used to find multiple soliton solutions of nonlinear partial differential equations, this approach is constructive and pure algebraic. The results found here are tested on computer and therefore their validity is ensured.展开更多
Some soliton solutions and periodic solutions of hybrid lattice, discretized mKdV lattice, and modified Volterra lattice have been obtained by introducing a new method. This approach allows us to directly construct so...Some soliton solutions and periodic solutions of hybrid lattice, discretized mKdV lattice, and modified Volterra lattice have been obtained by introducing a new method. This approach allows us to directly construct some explicit exact solutions for polynomial nonlinear differential-difference equations.展开更多
基金The project supported by "973" Project under Grant No.2004CB318000, the Doctor Start-up Foundation of Liaoning Province of China under Grant No. 20041066, and the Science Research Plan of Liaoning Education Bureau under Grant No. 2004F099
文摘The closed form of solutions of Kac-van Moerbeke lattice and self-dual network equations are considered by proposing transformations based on Riccati equation, using symbolic computation. In contrast to the numerical computation of travelling wave solutions for differential difference equations, our method obtains exact solutions which have physical relevance.
基金The project supported by '973' Project under Grant No.2004CB318000Doctor Start-up Foundation of Liaoning Province under Grant No.1040225Science and Technology Research Project of Liaoning Education Bureau
文摘In this paper, a series of two line-soliton solutions and double periodic solutions of Chaffee-Infante equation have been obtained by using a new transformation. Unlike the existing methods which are used to find multiple soliton solutions of nonlinear partial differential equations, this approach is constructive and pure algebraic. The results found here are tested on computer and therefore their validity is ensured.
基金中国博士后科学基金,国家重点基础研究发展计划(973计划),Doctor Start-up Foundation of Liaoning Province,Science Research Plan of Liaoning Education Bureau
文摘Some soliton solutions and periodic solutions of hybrid lattice, discretized mKdV lattice, and modified Volterra lattice have been obtained by introducing a new method. This approach allows us to directly construct some explicit exact solutions for polynomial nonlinear differential-difference equations.