Cylindrospermopsis raciborskii and its highly similar relatives Raphidiopsis species have been recognized as globally invasive and expansive filamentous cyanobacteria causing water blooms. Reports on C. raciborsMi/Rap...Cylindrospermopsis raciborskii and its highly similar relatives Raphidiopsis species have been recognized as globally invasive and expansive filamentous cyanobacteria causing water blooms. Reports on C. raciborsMi/Raphidiopsis species and their harmful metabolites such as hepatotoxic cylindrospermopsins (CYNs) in Chinese waters have been increasing, but mostly restricted to the southern regions of China. To further explore the existence and distribution of C. raciborskii in China, six water samples from Beijing city were morphologically and molecularly examined. Five samples of the six were shown to have Cylindrospermopsis filaments with straight and spiral morphotypes. PCR detection targeting on Cylindrospermopsis/Raphidiopsis specific 16S rRNA gene region also showed the positive amplification, and such amplifications were confirmed by sequencing and phylogenetic analysis. As well, three of the five Cylindrospermopsis containing samples were shown to have cyrJ--a gene of CYN synthesis gene duster. The results represented the presence of toxic Cylindrospermopsis at the most northern line in China so far, indicating rapid expansion of this harmful invasive cyanobacterium. It is strongly suggested that the monitoring on C. raciborskii/Raphidiopsis species and their production of cylindrospermopsin should be emphasized in Beijing and even more northem parts of China.展开更多
Plasma source is the most important part of the laboratory plasma platform for fundamental plasma experimental research. Barium oxide coated cathode plasma source is well recognized as an effective technique due to it...Plasma source is the most important part of the laboratory plasma platform for fundamental plasma experimental research. Barium oxide coated cathode plasma source is well recognized as an effective technique due to its high electron emission current. An indirectly heated oxide coated cathode plasma source has been constructed on a linear magnetized plasma device. The electron emission current density can reach 2 A/cm2 to 6 A/cm2 in pulsed mode within pulse length 5-20 ms. A 10 cm diameter, 2 m long plasma column with density 10is m-3 to 1019 m3 and electron temperature Te --~ 3-7 eV is produced. The spatial uniformity of the emission ability is less than 4% and the discharge reproducibility is better than 97%. With a wide range of the plasma parameters, this kind of plasma source provides great flexibility for many basic plasma investigations. The detail of construction and initial characterization of oxide coated cathode are described in this paper.展开更多
Magnetic reconnection provides a physical mechanism for fast energy conversion from magnetic energy to plasma kinetic energy. It is closely associated with many explosive phenomena in space plasma, usually collisionle...Magnetic reconnection provides a physical mechanism for fast energy conversion from magnetic energy to plasma kinetic energy. It is closely associated with many explosive phenomena in space plasma, usually collisionless in character. For this reason, researchers have become more interested in collisionless magnetic reconnection. In this paper, the various roles of electron dynamics in collisionless magnetic reconnection are reviewed. First, at the ion inertial length scale, ions and electrons are decoupled. The resulting Hall effect determines the reconnection electric field. Moreover, electron motions determine the current system inside the reconnection plane and the electron density cavity along the separatrices. The current system in this plane produces an out-of-plane magnetic field. Second, at the electron inertial length scale, the anisotropy of electron pressure determines the magnitude of the reconnection electric field in this region. The production of energetic electrons, which is an important characteristic during magnetic reconnection, is accelerated by the reconnection electric field. In addition, the different topologies, temporal evolution and spatial distribution of the magnetic field affect the accelerating process of electrons and determine the final energy of the accelerated electrons. Third, we discuss results from simulations and spacecraft observations on the secondary magnetic islands produced due to secondary instabilities around the X point, and the associated energetic electrons. Furthermore, progress in laboratory plasma studies is also discussed in regard to electron dynamics during magnetic reconnection. Finally, some unresolved problems are presented.展开更多
Two-dimensional particle-in-cell simulations are performed to investigate the formation of electron density depletions in collisionless magnetic reconnection.In anti-parallel reconnection,the quadrupole structures of ...Two-dimensional particle-in-cell simulations are performed to investigate the formation of electron density depletions in collisionless magnetic reconnection.In anti-parallel reconnection,the quadrupole structures of the out-of-plane magnetic field are formed,and four symmetric electron density depletion layers can be found along the separatrices due to the effects of magetic mirror.With the increase of the initial guide field,the symmetry of both the out-of-plane magnetic field and electron density depletion layers is distorted.When the initial guide field is sufficiently large,the electron density depletion layers along the lower left and upper right separatrices disappear.The parallel electric field in guide field reconnection is found to play an important role in forming such structures of the electron density depletion layers.The structures of the out-of-plane magnetic field By and electron depletion layers in anti-parallel and guide field reconnection are found to be related to electron flow or in-plane currents in the separatrix regions.In anti-parallel reconnection,electrons flow towards the X line along the separatrices,and are directed away from the X line along the magnetic field lines just inside the separatrices.In guide field reconnection,electrons can only flow towards the X line along the upper left and lower right separatrices due to the existence of the parallel electric field in these regions.展开更多
基金Supported by the National Natural Science Foundation of China(No.41561005)
文摘Cylindrospermopsis raciborskii and its highly similar relatives Raphidiopsis species have been recognized as globally invasive and expansive filamentous cyanobacteria causing water blooms. Reports on C. raciborsMi/Raphidiopsis species and their harmful metabolites such as hepatotoxic cylindrospermopsins (CYNs) in Chinese waters have been increasing, but mostly restricted to the southern regions of China. To further explore the existence and distribution of C. raciborskii in China, six water samples from Beijing city were morphologically and molecularly examined. Five samples of the six were shown to have Cylindrospermopsis filaments with straight and spiral morphotypes. PCR detection targeting on Cylindrospermopsis/Raphidiopsis specific 16S rRNA gene region also showed the positive amplification, and such amplifications were confirmed by sequencing and phylogenetic analysis. As well, three of the five Cylindrospermopsis containing samples were shown to have cyrJ--a gene of CYN synthesis gene duster. The results represented the presence of toxic Cylindrospermopsis at the most northern line in China so far, indicating rapid expansion of this harmful invasive cyanobacterium. It is strongly suggested that the monitoring on C. raciborskii/Raphidiopsis species and their production of cylindrospermopsin should be emphasized in Beijing and even more northem parts of China.
基金supported by National Natural Science Foundation of China(No.11275200)
文摘Plasma source is the most important part of the laboratory plasma platform for fundamental plasma experimental research. Barium oxide coated cathode plasma source is well recognized as an effective technique due to its high electron emission current. An indirectly heated oxide coated cathode plasma source has been constructed on a linear magnetized plasma device. The electron emission current density can reach 2 A/cm2 to 6 A/cm2 in pulsed mode within pulse length 5-20 ms. A 10 cm diameter, 2 m long plasma column with density 10is m-3 to 1019 m3 and electron temperature Te --~ 3-7 eV is produced. The spatial uniformity of the emission ability is less than 4% and the discharge reproducibility is better than 97%. With a wide range of the plasma parameters, this kind of plasma source provides great flexibility for many basic plasma investigations. The detail of construction and initial characterization of oxide coated cathode are described in this paper.
基金supported by the National Natural Science Foundation of China (40725013, 40974081 and 40931053)the Chinese Academy of Sciences (KJCX2-YW-N28)the Ocean Public Welfare Scientific Research Project, State Oceanic Administration of China (201005017)
文摘Magnetic reconnection provides a physical mechanism for fast energy conversion from magnetic energy to plasma kinetic energy. It is closely associated with many explosive phenomena in space plasma, usually collisionless in character. For this reason, researchers have become more interested in collisionless magnetic reconnection. In this paper, the various roles of electron dynamics in collisionless magnetic reconnection are reviewed. First, at the ion inertial length scale, ions and electrons are decoupled. The resulting Hall effect determines the reconnection electric field. Moreover, electron motions determine the current system inside the reconnection plane and the electron density cavity along the separatrices. The current system in this plane produces an out-of-plane magnetic field. Second, at the electron inertial length scale, the anisotropy of electron pressure determines the magnitude of the reconnection electric field in this region. The production of energetic electrons, which is an important characteristic during magnetic reconnection, is accelerated by the reconnection electric field. In addition, the different topologies, temporal evolution and spatial distribution of the magnetic field affect the accelerating process of electrons and determine the final energy of the accelerated electrons. Third, we discuss results from simulations and spacecraft observations on the secondary magnetic islands produced due to secondary instabilities around the X point, and the associated energetic electrons. Furthermore, progress in laboratory plasma studies is also discussed in regard to electron dynamics during magnetic reconnection. Finally, some unresolved problems are presented.
基金supported by the Chinese Academy of Sciences (KJCX2-YW-N28)the National Natural Science Foundation of China (40725013,40974081 and 40931053)+1 种基金the Specialized Research Fund for State Key Laboratoriesthe Fundamental Researd Funds for the Central Universities (WK20800000010)
文摘Two-dimensional particle-in-cell simulations are performed to investigate the formation of electron density depletions in collisionless magnetic reconnection.In anti-parallel reconnection,the quadrupole structures of the out-of-plane magnetic field are formed,and four symmetric electron density depletion layers can be found along the separatrices due to the effects of magetic mirror.With the increase of the initial guide field,the symmetry of both the out-of-plane magnetic field and electron density depletion layers is distorted.When the initial guide field is sufficiently large,the electron density depletion layers along the lower left and upper right separatrices disappear.The parallel electric field in guide field reconnection is found to play an important role in forming such structures of the electron density depletion layers.The structures of the out-of-plane magnetic field By and electron depletion layers in anti-parallel and guide field reconnection are found to be related to electron flow or in-plane currents in the separatrix regions.In anti-parallel reconnection,electrons flow towards the X line along the separatrices,and are directed away from the X line along the magnetic field lines just inside the separatrices.In guide field reconnection,electrons can only flow towards the X line along the upper left and lower right separatrices due to the existence of the parallel electric field in these regions.