We displayed that the low-cost natural zeolite with molecular sieve structure can be used as the carrier of sulfur in lithium-sulfur batteries.Meanwhile,a simple salt-washing method was implemented on zeolite for dred...We displayed that the low-cost natural zeolite with molecular sieve structure can be used as the carrier of sulfur in lithium-sulfur batteries.Meanwhile,a simple salt-washing method was implemented on zeolite for dredging the internal microchannel to improve the ability of adsorption,ion exchange and sulfur loading.The experimental results show that the first specific discharge capacities of zeolite/S and salt-washed zeolite/S cathode under 0.2 C current density are 950.7 and1116.8 mAh/g,respectively,and corresponding discharge capacities remain at 350.6 and 604.2 mAh/g after 300 cycles.The first specific discharge capacity of salt-washed zeolite/S composite is 17.5%higher than that sample without salt-washing,and the corresponding ionic conductivity is improved.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.11627801,51772254,11502225,and 51375017)the Natural Science Foundation of Hunan Province of China(No.2019JJ50578)。
文摘We displayed that the low-cost natural zeolite with molecular sieve structure can be used as the carrier of sulfur in lithium-sulfur batteries.Meanwhile,a simple salt-washing method was implemented on zeolite for dredging the internal microchannel to improve the ability of adsorption,ion exchange and sulfur loading.The experimental results show that the first specific discharge capacities of zeolite/S and salt-washed zeolite/S cathode under 0.2 C current density are 950.7 and1116.8 mAh/g,respectively,and corresponding discharge capacities remain at 350.6 and 604.2 mAh/g after 300 cycles.The first specific discharge capacity of salt-washed zeolite/S composite is 17.5%higher than that sample without salt-washing,and the corresponding ionic conductivity is improved.