期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络注意力机制U-net校正CT图像中的金属伪影 被引量:1
1
作者 朱昱霖 谢耀钦 +4 位作者 梁晓坤 邓磊 张成龙 周炫汝 张怀岺 《中国医学影像技术》 CSCD 北大核心 2022年第5期753-757,共5页
目的观察基于卷积神经网络(CNN)的注意力机制U-net(Attention U-net)校正CT图像金属伪影的价值。方法选取1支猪前蹄,将直径7.5 mm的金属麻花钻头自其蹄部前表面穿至踝部,采集不同角度原始CT图像。分别采用Attention U-net、传统普通阈... 目的观察基于卷积神经网络(CNN)的注意力机制U-net(Attention U-net)校正CT图像金属伪影的价值。方法选取1支猪前蹄,将直径7.5 mm的金属麻花钻头自其蹄部前表面穿至踝部,采集不同角度原始CT图像。分别采用Attention U-net、传统普通阈值金属伪影校正(MAR)、图像增强后的传统普通阈值MAR、Cycle生成对抗网络(GAN)MAR及手动分割MAR校正原始CT图像中的金属伪影;记录校正后每幅图像的像素点CT值、空间非均匀度(SNU)及伪影指数(AI),评估Attention U-net校正金属伪影的价值。结果以Attention U-net校正后,金属伪影对CT图像的影响降低,细节和轮廓恢复,猪前蹄结构数据得以保留,并减少了二次伪影。相比校正前,校正后图像的振幅及像素点CT值更稳定。校正前、后图像的SUN分别为165.0(133.6,198.1)和27.2(14.4,38.7),AI分别为137.5(99.4,164.6)和29.1(21.1,38.7)。结论采用基于CNN的Attention U-net算法校正CT图像中的金属伪影可降低计算复杂度、提高MAR效率,有助于恢复原始CT图像的完整性。 展开更多
关键词 神经网络 计算机 伪影 重建算法 体层摄影术 X线计算机
下载PDF
Transferring deep neural networks for the differentiation of mammographic breast lesions 被引量:5
2
作者 YU ShaoDe LIU LingLing +2 位作者 WANG ZhaoYang DAI GuangZhe xie yaoqin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第3期441-447,共7页
Machine learning can help differentiating benign and malignant lesions seen on mammographic images. Conventional models require handcrafting features for lesion representation. Due to insufficient medical instances, t... Machine learning can help differentiating benign and malignant lesions seen on mammographic images. Conventional models require handcrafting features for lesion representation. Due to insufficient medical instances, the performance of convolutional neural networks(CNNs) can be further increased. This study makes use of transfer learning for mammographic breast lesion diagnosis and deep neural network(DNN) models pre-trained with large-scale natural images are employed. The diagnosis performance is evaluated with the prediction accuracy(ACC) and the area under the curve(AUC) on average. A histologically verified database is analyzed which contains 406 lesions(230 benign and 176 malignant). Involved models include transferred DNNs(GoogLeNet and AlexNet), shallow CNNs(CNN2 and CNN3) that are fully trained with medical instances and boosted by support vector machine(SVM), and two conventional methods which combine handcrafted features and SVM for lesion diagnosis. Experimental results indicate that GoogLeNet achieves the best performance(ACC=0.81, AUC=0.88), followed by AlexNet(ACC=0.79, AUC=0.83) and CNN3(ACC=0.73, AUC=0.82). Knowledge transfer can improve the mammographic breast cancer diagnosis, while its wide application still requires further verification in medical imaging domain. 展开更多
关键词 convolutional NEURAL network TRANSFER learning mammographic image BREAST CANCER DIAGNOSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部