Catalytic transfer of genetic information from DNA to RNA is very important in life activities. The unconventional RNA transcription level may be related to the source of genetic diseases. At present, conventional met...Catalytic transfer of genetic information from DNA to RNA is very important in life activities. The unconventional RNA transcription level may be related to the source of genetic diseases. At present, conventional methods for detection of RNA transcripts usually involve cumbersome preparative steps, or require sophisticated laboratory equipments. In this study, we presented a rapid, sensitive nano-detection platform for monitoring of RNA transcript levels. T7 RNA polymerase transcription reaction is employed as the example to test the feasibility of this method. In this design, in vitro synthesized RNA products can be hybridized to the FAM labeled single strand DNA (ssDNA) probes which can be adsorbed onto the graphene oxide (GO) surface. Using GO as the fluorescence switch, excellent capacity of the signal-on fluorescence platform for detection of RNA transcripts level is demonstrated. Transcription levels sensing with this nano-platform achieved a sensitivity of 5 pmol/L transcription template. It is antici- pated that current developed RNA transcript nano-detection mode has the potential to be an alternative to the conventional RNA transcript detection methods.展开更多
The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy...The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than two-photon confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.展开更多
基金supported by the National Basic Research Program of China (2010CB732602)the Key Program of NSFC-Guangdong Joint Funds of China (U0931005)+1 种基金the National Natural Science Foundation of China(81101121)the Natural Science Foundation of Guangdong Province(S2011040005386)
文摘Catalytic transfer of genetic information from DNA to RNA is very important in life activities. The unconventional RNA transcription level may be related to the source of genetic diseases. At present, conventional methods for detection of RNA transcripts usually involve cumbersome preparative steps, or require sophisticated laboratory equipments. In this study, we presented a rapid, sensitive nano-detection platform for monitoring of RNA transcript levels. T7 RNA polymerase transcription reaction is employed as the example to test the feasibility of this method. In this design, in vitro synthesized RNA products can be hybridized to the FAM labeled single strand DNA (ssDNA) probes which can be adsorbed onto the graphene oxide (GO) surface. Using GO as the fluorescence switch, excellent capacity of the signal-on fluorescence platform for detection of RNA transcripts level is demonstrated. Transcription levels sensing with this nano-platform achieved a sensitivity of 5 pmol/L transcription template. It is antici- pated that current developed RNA transcript nano-detection mode has the potential to be an alternative to the conventional RNA transcript detection methods.
基金the Natural Science Foundation of Guangdong Province of China (Grant No. 05005926)the Plan Project of Science and Technology of Guangzhou City (Grant No. 2007J1-C0011)Open Foundation of the Key Laboratory of Laser Life Science,Ministry of Education of China(2007-05)
文摘The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than two-photon confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.