It is crucial to design energy-efficient advanced encryption standard (AES) cryptography for low power embedded systems powered by limited battery. Since the S-Boxes consume much of the total AES circuit power, an e...It is crucial to design energy-efficient advanced encryption standard (AES) cryptography for low power embedded systems powered by limited battery. Since the S-Boxes consume much of the total AES circuit power, an efficient approach to reducing the AES power consumption consists in reducing the S-Boxes power consumption. Among various implementations of S-Boxes, the most energy-efficient one is the decoder-switchencoder (DSE) architecture. In this paper, we refine the DSE architecture and propose one faster, more compact S-Boxes architecture of lower power: an improved and full-balanced DSE architecture. This architecture achieves low power consumption of 68 μW at 10 MHz using 0.25 ktm 1.SV UMC CMOS technology. Compared with the original DSE S-Boxes, it further reduces the delay, gate count and power consumption by 8%, 14% and 10% respect/vely. At the sane time, simulation results show that the improved DSE S-Boxes has the best performance among various S-Boxes architectures in terms of power-area product and power-delay product, and it is optimal for implementing low power AES cryptography.展开更多
基金the Hi-Tech Research and Development Program of China(2006AA01Z226); HUST-SRF(2006Z011B); Program for New Century Excellent Talents in University and the Natural Science Foundation of Hubei(2006ABA080).
文摘It is crucial to design energy-efficient advanced encryption standard (AES) cryptography for low power embedded systems powered by limited battery. Since the S-Boxes consume much of the total AES circuit power, an efficient approach to reducing the AES power consumption consists in reducing the S-Boxes power consumption. Among various implementations of S-Boxes, the most energy-efficient one is the decoder-switchencoder (DSE) architecture. In this paper, we refine the DSE architecture and propose one faster, more compact S-Boxes architecture of lower power: an improved and full-balanced DSE architecture. This architecture achieves low power consumption of 68 μW at 10 MHz using 0.25 ktm 1.SV UMC CMOS technology. Compared with the original DSE S-Boxes, it further reduces the delay, gate count and power consumption by 8%, 14% and 10% respect/vely. At the sane time, simulation results show that the improved DSE S-Boxes has the best performance among various S-Boxes architectures in terms of power-area product and power-delay product, and it is optimal for implementing low power AES cryptography.