Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and horm...Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and hormone metabolism, nutritional balances, and results in ion toxicity in plants. To better understand the mechanisms of salt-induced growth inhibition in Chinese cabbage, RNA-seq and physiological index determination were conducted to explore the impacts of salt stress on carbon cycle metabolism and photosynthesis in Chinese cabbage. Here, we found that the number of thylakoids and grana lamellae and the content of starch granules and chlorophyll in the leaves of Chinese cabbage under salt stress showed a time-dependent response, first increasing and then decreasing. Chinese cabbage increased the transcript levels of genes related to the photosynthetic apparatus and carbon metabolism under salt stress, probably in an attempt to alleviate damage to the photosynthetic system and enhance CO_(2) fixation and energy metabolism. The transcription of genes related to starch and sucrose synthesis and degradation were also enhanced;this might have been an attempt to maintain intracellular osmotic pressure by increasing soluble sugar concentrations. Soluble sugars could also be used as potential reactive oxygen species(ROS) scavengers, in concert with peroxidase(POD)enzymes, to eliminate ROS that accumulate during metabolic processes. Our study characterizes the synergistic response network of carbon metabolism and photosynthesis under salt stress.展开更多
Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines gi...Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.展开更多
Diamond possesses excellent thermal conductivity and tunable bandgap.Currently,the high-pressure,high-temperature,and chemical vapor deposition methods are the most promising strategies for the commercial-scale produc...Diamond possesses excellent thermal conductivity and tunable bandgap.Currently,the high-pressure,high-temperature,and chemical vapor deposition methods are the most promising strategies for the commercial-scale production of synthetic diamond.Although diamond has been extensively employed in jewelry and cutting/grinding tasks,the realization of its high-end applications through microstructure engineering has long been sought.Herein,we discuss the microstructures encountered in diamond and further concentrate on cutting-edge investigations utilizing electron microscopy techniques to illuminate the transition mechanism between graphite and diamond during the synthesis and device constructions.The impacts of distinct microstructures on the electrical applications of diamond,especially the photoelectrical,electrical,and thermal properties,are elaborated.The recently reported elastic and plastic deformations revealed through in situ microscopy techniques are also summarized.Finally,the limitations,perspectives,and corresponding solutions are proposed.展开更多
Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous ...Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous materials,which significantly affects the performance of diamond-based devices.Herein,combing experiments and theoretical calculations,taking diamond–iron(Fe)interface as a prototype,the counter-diffusion mechanism of Fe/carbon atoms has been established.Surprisingly,it is identified that Fe and diamond first form a coherent interface,and then Fe atoms diffuse into diamond and prefer the carbon vacancies sites.Meanwhile,the relaxed carbon atoms diffuse into the Fe lattice,forming Fe_(3)C.Moreover,graphite is observed at the Fe_(3)C surface when Fe_(3)C is over-saturated by carbon atoms.The present findings are expected to offer new insights into the atomic mechanism for diamondferrous material's interfacial reactions,benefiting diamond-based device applications.展开更多
Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)s...Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.展开更多
Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,ha...Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,has been widely used as a common reference in biological research.Although its genome assembly has been updated twice,the current gene annotation still lacks information on untranslated regions(UTRs)and alternative splicing(AS).Here,we constructed a high-quality gene annotation(JZSv3)using a full-length transcriptome acquired by nanopore sequencing,yielding a total of 59452 genes and 75684 transcripts.Additionally,we re-analyzed the previously reported transcriptome data related to the development of different tissues and cold response using JZSv3 as a reference,and found that 3843 out of 11908 differentially expressed genes(DEGs)underwent AS during the development of different tissues and 309 out of 903 cold-related genes underwent AS in response to cold stress.Meanwhile,we also identified many AS genes,including BolLHCB5 and BolHSP70,that displayed distinct expression patterns within variant transcripts of the same gene,highlighting the importance of JZSv3 as a pivotal reference for AS analysis.Overall,JZSv3 provides a valuable resource for exploring gene function,especially for obtaining a deeper understanding of AS regulation mechanisms.展开更多
In contrast to the traditional Western approach to macro-fiscal management,China’s proactive fiscal policy is founded on a people-centered development philosophy and,with distinctive Chinese characteristics,is a sign...In contrast to the traditional Western approach to macro-fiscal management,China’s proactive fiscal policy is founded on a people-centered development philosophy and,with distinctive Chinese characteristics,is a significant policy innovation of macroeconomic management in the Chinese modernization.Although there are notable distinctions between the Western“Keynesian”and the“nonKeynesian”schools of thought,both of these approaches’core policy goals and methodological roots are the same,composing the traditional Western macro-fiscal approach.This approach faces increasing real dilemmas.China’s proactive fiscal policy,however,places greater emphasis on future potential growth rates in addition to equilibrium between supply and demand,achieving a fiscal policy transformation with a new approach.In this paper we argue that with such a new approach,China should reconsider the nature and reasonable level of the fiscal deficit,the function and risk assessment criteria of government debt,the scope and effects of reductions in taxes and fees,its approach and focus of demand management,and the costs and resulting efficiencies of policies in order to develop a new fiscal policy paradigm that is more in line with its stated goals.展开更多
A failure criterion fully considering the anisotropy and hydration of shale is essential for shale formation stability evaluation.Thus,a novel failure criterion for hydration shale is developed by using Jaeger’s shea...A failure criterion fully considering the anisotropy and hydration of shale is essential for shale formation stability evaluation.Thus,a novel failure criterion for hydration shale is developed by using Jaeger’s shear failure criterion to describe the anisotropy and using the shear strength reduction caused by clay minerals hydration to evaluate the hydration.This failure criterion is defined with four parameters in Jaeger’s shear failure criterion(S_(1),S_(2),a andφ),three hydration parameters(k,ω_(sh)andσ_(s))and two material size parameters(d and l0).The physical meanings and determining procedures of these parameters are described.The accuracy and applicability of this failure criterion are examined using the published experimental data,showing a cohesive agreement between the predicted values and the testing results,R^(2)=0.916 and AAREP(average absolute relative error percentage)of 9.260%.The error(|D_(p)|)is then discussed considering the effects ofβ(angle between bedding plane versus axial loading),moisture content and confining pressure,presenting that|Dp|increases whenβis closer to 30°,and|D_(p)|decreases with decreasing moisture content and with increasing confining pressure.Moreover,|D_(p)|is demonstrated as being sensitive to S1and being steady with decrease in the data set whenβis 0°,30°,45°and 90°.展开更多
Rice yield stability is a breeding goal,particularly for short-growth duration rice,but its underlying mechanisms remain unclear.In an attempt to identify the relationship between yield stability and source–sink char...Rice yield stability is a breeding goal,particularly for short-growth duration rice,but its underlying mechanisms remain unclear.In an attempt to identify the relationship between yield stability and source–sink characteristics in short-growth duration rice,a field experiment was conducted at three sites(Yueyang,Liuyang,and Hengyang)in 2021 and 2022.This study compared yield,yield components,source–sink characteristics,and their stability between two stable-yielding short-growth duration rice cultivars,Zhongzao 39(Z-39)and Lingliangyou 268(L-268),and two unstable-yielding short-growth duration rice cultivars,Zhongjiazao 17(Z-17)and Zhuliangyou 819(Z-819).The stability of agronomic parameters was represented by the coefficient of variation(CV).The respective CVs of yield in Z-17,Z-819,Z-39,and L-268 were 10.2%,10.1%,4.5%,and 5.7%in 2021 and 19.7%,15.0%,5.4%,and 6.5%in 2022.The respective CVs of grain weight were 6.3%,5.7%,3.4%,and 4.5%in Z-17,Z-819,Z-39,and L-268 in 2021,and 8.1%,6.3%,1.5%,and 0.8%in 2022.The mean source capacity per spikelet and pre-heading non-structural carbohydrate reserves per spikelet(NSC_(pre))were 7%–43%and7%–72%lower in Z-819 and Z-17than in L-268 and Z-39 in 2021 and 2022.The mean quantum yield of photosystem II photochemistry of leaf,leaf area index,and specific leaf weight of L-268 and Z-39 were higher than those of Z-819 and Z-17 at the heading stage.This study suggests that high NSC_(pre),caused by great leaf traits before heading,increases source capacity per spikelet and its stability,thereby increasing the stability of grain weight and yield.Increasing NSC_(pre)is critical for achieving grain weight and yield stability in short-growth duration rice.展开更多
BACKGROUND Atrial fibrillation(AF)is one of the most common persistent arrhythmias among adult cardiovascular diseases.It is important to identify potential risk factors for AF.Members of the insulin-like growth facto...BACKGROUND Atrial fibrillation(AF)is one of the most common persistent arrhythmias among adult cardiovascular diseases.It is important to identify potential risk factors for AF.Members of the insulin-like growth factor(IGF)family exert a variety of effects on various cell types in the context of the pathogenesis of cardiovascular diseases,and previous population-based studies indicate associations between IGF family members and AF.However,the causal effects of IGF family members in AF have not been evaluated.assess genetic relationships between IGF family members and AF.METHODS MR was performed based on genome-wide association study(GWAS)datasets,and concentration levels of 14 IGF family members were retrieved.An initial MR analysis was conducted to identify single nucleotide polymorphisms potentially associated with IGF serum concentrations.A GWAS meta-analysis including 60620 AF cases and 970216 control participants of European ancestry was then conducted to identify AF causal effects.Two-sample MR packages were used to perform MR analysis in R.MR-Egger,weighted median(WM),and inverse va-riance weighted(IVW)methods were used.RESULTS Core Tip:Due to the high prevalence of atrial fibrillation(AF),and adverse outcomes related to it,it is important to identify risk factors associated with development of the condition.Insulin-like growth factor(IGF)family members exert a variety of effects on various cell types in the context of the pathogenesis of cardiovascular diseases,and previous population-based studies indicate associations between IGF family members and AF.However,the causal effects of IGF family members in AF have not been evaluated.The results of the current study provide novel insights on the pathogenesis of AF,and implic-ations of serum IGF family member concentrations when assessing the risk of AF.The study generated evidence on the potential roles of developmental pathological effects in the pathogenesis of AF.Further observational and experimental studies are critically needed.展开更多
Background: Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of AKI in hospitalized patients. Contrast agents mainly cause acute kidney injury through hypoxic damage to renal parenchyma and...Background: Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of AKI in hospitalized patients. Contrast agents mainly cause acute kidney injury through hypoxic damage to renal parenchyma and toxic effects on renal capillaries and tubules. Patients with CI-AKI are more likely to experience adverse events, including longer hospital stay and costs, longer ICU stay, and higher mortality rates. This article elaborates on the definition, epidemiology, risk factors, pathogenesis, and prevention strategies of CI-AKI. Methods: We conducted an extensive literature search using contrast agents and AKI as keywords to identify relevant studies on CI-AKI. Conclusion: CI-AKI is a significant clinical challenge that requires a multifaceted approach to prevention and management. Understanding the risk factors, pathophysiology, and current best practices is essential for healthcare providers to optimize patient care and improve outcomes in those undergoing contrast-enhanced imaging procedures. Hydration therapy is currently the main prevention method, but antioxidants may also become a new strategy.展开更多
Although Blufensins(Bln)have important functions in the response of plants to biotic stress the precise functioning of Bln in wheat remains largely unknown.Here we isolated a Bln gene(TaBln4)from Suwon 11 infected by ...Although Blufensins(Bln)have important functions in the response of plants to biotic stress the precise functioning of Bln in wheat remains largely unknown.Here we isolated a Bln gene(TaBln4)from Suwon 11 infected by Puccinia striiformis f.sp.tritici(Pst).Expression of TaBln4 increased in host plants at the early stage of infection with a virulent Pst race(CYR31)but was unchanged in response to infection by an avirulent race(CYR23).Transcription levels of TaBln4 were also regulated by hormone and abiotic stresses.Expression of TaBln4 in tobacco leaves suppressed Bax-induced programmed cell death.Knockdown of TaBln4 by virus-induced gene silencing inhibited colonization of race CYR31 by increasing the accumulation of H2O2 and formation of hypersensitive responses(HR).Transient overexpression of TaBln4 by a transient overexpression system(BSMV-VOX)increased the susceptibility of wheat to CYR31.Results from bimolecular fluorescence complementation and pull-down assays demonstrated that TaBLN4 interacted with calmodulin.Taken together,our results suggest that TaBln4 negatively regulates resistance in wheat to Pst in a reactive oxygen species(ROS)-and HR-dependent manner.展开更多
A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes ...A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes and 50μm Li anodes.Termed“CETHER-3,”this electrolyte is based on LiTFSI,LiDFOB,and LiBF4 with 5 vol%fluorinated ethylene carbonate in 1,2-dimethoxyethane.Commer-cial carbonate and state-of-the-art binary salt ether electrolytes were also tested as baselines.With CETHER-3,the electrochemical performance of the full-cell battery is among the most favorably reported in terms of high-voltage cycling stability.For example,LiNi_(x)Mn_(y)Co_(1-x-y)O_(2)(NMC)-Li metal cells retain 80%capacity at 430 cycles with a 4.4 V cut-off and 83%capacity at 100 cycles with a 4.5 V cut-off(charge at C/5,discharge at C/2).According to simulation by density functional theory and molecular dynamics,this favorable performance is an outcome of enhanced coordination between Li^(+)and the solvent/salt molecules.Combining advanced microscopy(high-resolution transmission electron microscopy,scanning electron microscopy)and surface science(X-ray photoelectron spectroscopy,time-of-fight secondary ion mass spectroscopy,Fourier-transform infrared spectroscopy,Raman spectroscopy),it is demonstrated that a thinner and more stable cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)are formed.The CEI is rich in lithium sulfide(Li_(2)SO_(3)),while the SEI is rich in Li_(3)N and LiF.During cycling,the CEI/SEI suppresses both the deleterious transformation of the cathode R-3m layered near-surface structure into disordered rock salt and the growth of lithium metal dendrites.展开更多
Cymbaria daurica L. is a well-known traditional Mongolian medicine, which has been used to treat diabetesrelated conditions characterized by persistent thirst and hunger, copious urination, and weight loss. We aimed t...Cymbaria daurica L. is a well-known traditional Mongolian medicine, which has been used to treat diabetesrelated conditions characterized by persistent thirst and hunger, copious urination, and weight loss. We aimed to investigate the protective effects of C. daurica extracts and phenylethanoid glycosides including verbascoside and isoacteoside on INS-1 cells. We discovered phenylethanoid glycosides from n-butanol extract with large content through extraction and separation. We continue to study the protective effects of phenylethanoid glycosides including verbascoside and isoacteoside on INS-1 cells. INS-1 cells were treated with C. daurica, cell viability assay, RNA-seq technology, superoxide dismutase activity and malonaldehyde content, quantitative real time-PCR and Western blot analysis were used to study the protective effects of C. daurica. Cell viability assay resulted that n-butanol extract and verbascoside, isoacteoside showed protective effects of C. daurica. According to the RNA-seq technology to identify the differentially expressed genes in INS-1 cells, the pathway of gene enrich the protective effect of C. daurica on oxidative stress. SOD activity and the content of MDA indicated that C. daurica could enhance the antioxidant capacity of INS-1 cells. Further investigation indicated C. daurica alleviate oxidative stress by inhibiting INS-1 cell apoptosis. C. daurica may play an anti-diabetic role by inhibiting islet cell apoptosis.展开更多
OBJECTIVE To evaluate the prospective association between cumulative resting heart rate(cumRHR)and rapid renal function decline(RRFD)in a cohort of individuals aged 60 and older.METHODS In the Tianjin Chronic Kidney D...OBJECTIVE To evaluate the prospective association between cumulative resting heart rate(cumRHR)and rapid renal function decline(RRFD)in a cohort of individuals aged 60 and older.METHODS In the Tianjin Chronic Kidney Disease Cohort Study,the individuals who underwent three consecutive physical examinations between 2014 and 2017,with estimated glomerular filtration rate(eGFR)greater than 60 mL/min per 1.73 m2 and aged 60 years or older were enrolled.A total of 27,564 patients were prospectively followed up from January 1,2017 to December 31,2020.The 3-year cumRHR was calculated.The primary outcome was RRFD,defined as an annualized decline in eGFR of 5 mL/min per 1.73 m2 or greater.Logistic and restricted spline regression models and subgroup analysis were used to investigate the association of cumRHR with RRFD after adjusting for all confounders.RESULTS During a median follow-up of 3.2 years,a total of 4,347(15.77%)subjects developed RRFD.In fully-adjusted models,compared with the lowest quartile of cumRHR,the odds ratio(OR)for the highest was 1.44(1.28–1.61),P<0.001.Furthermore,each 1-standard deviation(27.97 beats/min per year)increment in cumRHR was associated with a 17%(P<0.001)increased risk of RRFD,with a linear positive correlation(P for non-linear=0.803).Participants with a 3-year cumRHR≥207(beats/min)*year(equivalent to≥69 beats/min per year in 3 years)were found to be at a higher risk of RRFD.CONCLUSIONS The cumRHR is significantly associated with a higher risk of RRFD among older adults.These results might provide an effective goal for managing and delaying the decline of renal function in the older adults.展开更多
Cloud storage has been widely used to team work or cooperation devel-opment.Data owners set up groups,generating and uploading their data to cloud storage,while other users in the groups download and make use of it,wh...Cloud storage has been widely used to team work or cooperation devel-opment.Data owners set up groups,generating and uploading their data to cloud storage,while other users in the groups download and make use of it,which is called group data sharing.As all kinds of cloud service,data group sharing also suffers from hardware/software failures and human errors.Provable Data Posses-sion(PDP)schemes are proposed to check the integrity of data stored in cloud without downloading.However,there are still some unmet needs lying in auditing group shared data.Researchers propose four issues necessary for a secure group shared data auditing:public verification,identity privacy,collusion attack resis-tance and traceability.However,none of the published work has succeeded in achieving all of these properties so far.In this paper,we propose a novel block-chain-based ring signature PDP scheme for group shared data,with an instance deployed on a cloud server.We design a linkable ring signature method called Linkable Homomorphic Authenticable Ring Signature(LHARS)to implement public anonymous auditing for group data.We also build smart contracts to resist collusion attack in group auditing.The security analysis and performance evalua-tion prove that our scheme is both secure and efficient.展开更多
As a typical building with ethnic and regional characteristics in southwest Chi-na, its construction skills contain rich local ecological wisdom. The detailed analysis of the climatic and geomorphological features of ...As a typical building with ethnic and regional characteristics in southwest Chi-na, its construction skills contain rich local ecological wisdom. The detailed analysis of the climatic and geomorphological features of the Liangshan Yi nationality area shows that the thermal mass effect is the first choice for the passive adjustment strategy of residential dwellings. This study focuses on the typical representatives of traditional dwellings in Meigu County, analyzing the wisdom of ecological construction to improve the thermal mass effects of res-idential buildings at the macro (village), moderate (courtyard), and micro (building unit) levels. Based on this analysis, the study summarizes the “genetic factor library” of the ecological construction mode of traditional Yi residential dwellings. Finally, the measured data of the residential thermal environment and the simulation data of Ecotect software are used to study and judge the logic behind its ecological construction wisdom. The results show that the tradi-tional dwellings of the Yi nationality in Liangshan have six aspects of local en-vironmental knowledge to improve the thermal mass effects performance of buildings. The winter thermal environment of the house is comfortable, and the heat is sufficient;Rammed earth materials in residential buildings have more potent, powerful, and robust thermal mass effects performance than stone slabs and wooden boards.展开更多
基金financially supported by the Natural Science Foundation of Hebei Province-Innovation Group Research Project(Grant No.C2020204111)the National Natural Science Foundation of China(Grant No.31930098)+3 种基金the Science Fund for Distinguished Young Scholars of Hebei Province(Grant No.C2021204049)the Hebei Province Outstanding Youth Fund(Grant No.BJ2021024)the Hebei Provincial Key Research Projects(21326344D)Hebei International Joint Research Base of Modern Agricultural Biotechnology.
文摘Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and hormone metabolism, nutritional balances, and results in ion toxicity in plants. To better understand the mechanisms of salt-induced growth inhibition in Chinese cabbage, RNA-seq and physiological index determination were conducted to explore the impacts of salt stress on carbon cycle metabolism and photosynthesis in Chinese cabbage. Here, we found that the number of thylakoids and grana lamellae and the content of starch granules and chlorophyll in the leaves of Chinese cabbage under salt stress showed a time-dependent response, first increasing and then decreasing. Chinese cabbage increased the transcript levels of genes related to the photosynthetic apparatus and carbon metabolism under salt stress, probably in an attempt to alleviate damage to the photosynthetic system and enhance CO_(2) fixation and energy metabolism. The transcription of genes related to starch and sucrose synthesis and degradation were also enhanced;this might have been an attempt to maintain intracellular osmotic pressure by increasing soluble sugar concentrations. Soluble sugars could also be used as potential reactive oxygen species(ROS) scavengers, in concert with peroxidase(POD)enzymes, to eliminate ROS that accumulate during metabolic processes. Our study characterizes the synergistic response network of carbon metabolism and photosynthesis under salt stress.
基金financially supported by the National Natural Science Foundation of China(No.52072322)the Department of Science and Technology of Sichuan Province,China(Nos.23GJHZ0147,23ZDYF0262,2022YFG0294,and 2019-GH02-00052-HZ)。
文摘Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFB3608604)National Natural Science Foundation of China (Grant Nos.12274371,52072345,62271450,U21A2070,and 62027816)+1 种基金Natural Science Foundation of Henan Province (Grant Nos.222300420077,222301420037)Foundation for the Returned Overseas Researchers of Henan Province.
文摘Diamond possesses excellent thermal conductivity and tunable bandgap.Currently,the high-pressure,high-temperature,and chemical vapor deposition methods are the most promising strategies for the commercial-scale production of synthetic diamond.Although diamond has been extensively employed in jewelry and cutting/grinding tasks,the realization of its high-end applications through microstructure engineering has long been sought.Herein,we discuss the microstructures encountered in diamond and further concentrate on cutting-edge investigations utilizing electron microscopy techniques to illuminate the transition mechanism between graphite and diamond during the synthesis and device constructions.The impacts of distinct microstructures on the electrical applications of diamond,especially the photoelectrical,electrical,and thermal properties,are elaborated.The recently reported elastic and plastic deformations revealed through in situ microscopy techniques are also summarized.Finally,the limitations,perspectives,and corresponding solutions are proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274371,62271450,U21A2070,21805247,12074345)Cross-Disciplinary Innovative Research Group Project of Henan Province(Grant No.232300421004).
文摘Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous materials,which significantly affects the performance of diamond-based devices.Herein,combing experiments and theoretical calculations,taking diamond–iron(Fe)interface as a prototype,the counter-diffusion mechanism of Fe/carbon atoms has been established.Surprisingly,it is identified that Fe and diamond first form a coherent interface,and then Fe atoms diffuse into diamond and prefer the carbon vacancies sites.Meanwhile,the relaxed carbon atoms diffuse into the Fe lattice,forming Fe_(3)C.Moreover,graphite is observed at the Fe_(3)C surface when Fe_(3)C is over-saturated by carbon atoms.The present findings are expected to offer new insights into the atomic mechanism for diamondferrous material's interfacial reactions,benefiting diamond-based device applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.52072322,22209137,51604250)the Department of Science and Technology of Sichuan Province(CN)(GrantNos.2022YFG0294,23GJHZ0147,23ZDYF0262)Production-Education Integration Demonstration Project of Sichuan Province"Photovoltaic Industry Production-Education Integration Comprehensive Demonstration Base of Sichuan Province"(Sichuan Financial Education[2022]No.106.n)。
文摘Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.
基金supported by the National Natural Science Foundation of China (Grant Nos.31972411,31722048,and 31630068)the Central Public-interest Scientific Institution Basal Research Fund (Grant No.Y2022PT23)+1 种基金the Innovation Program of the Chinese Academy of Agricultural Sciences,and the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture and Rural Affairs,P.R.Chinasupported by NIFA,the Department of Agriculture,via UC-Berkeley,USA。
文摘Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,has been widely used as a common reference in biological research.Although its genome assembly has been updated twice,the current gene annotation still lacks information on untranslated regions(UTRs)and alternative splicing(AS).Here,we constructed a high-quality gene annotation(JZSv3)using a full-length transcriptome acquired by nanopore sequencing,yielding a total of 59452 genes and 75684 transcripts.Additionally,we re-analyzed the previously reported transcriptome data related to the development of different tissues and cold response using JZSv3 as a reference,and found that 3843 out of 11908 differentially expressed genes(DEGs)underwent AS during the development of different tissues and 309 out of 903 cold-related genes underwent AS in response to cold stress.Meanwhile,we also identified many AS genes,including BolLHCB5 and BolHSP70,that displayed distinct expression patterns within variant transcripts of the same gene,highlighting the importance of JZSv3 as a pivotal reference for AS analysis.Overall,JZSv3 provides a valuable resource for exploring gene function,especially for obtaining a deeper understanding of AS regulation mechanisms.
文摘In contrast to the traditional Western approach to macro-fiscal management,China’s proactive fiscal policy is founded on a people-centered development philosophy and,with distinctive Chinese characteristics,is a significant policy innovation of macroeconomic management in the Chinese modernization.Although there are notable distinctions between the Western“Keynesian”and the“nonKeynesian”schools of thought,both of these approaches’core policy goals and methodological roots are the same,composing the traditional Western macro-fiscal approach.This approach faces increasing real dilemmas.China’s proactive fiscal policy,however,places greater emphasis on future potential growth rates in addition to equilibrium between supply and demand,achieving a fiscal policy transformation with a new approach.In this paper we argue that with such a new approach,China should reconsider the nature and reasonable level of the fiscal deficit,the function and risk assessment criteria of government debt,the scope and effects of reductions in taxes and fees,its approach and focus of demand management,and the costs and resulting efficiencies of policies in order to develop a new fiscal policy paradigm that is more in line with its stated goals.
基金The financial supports from the Sichuan Science and Technology Program(No.2022NSFSC0185)the National Natural Science Foundation of China(Nos.42172313 and 51774246)+3 种基金the Natural Science Foundation of Chongqing(No.cstc2020jcyj-msxm X0570)the Fundamental Research Funds for the Central Universities(Nos.2020CDJ-LHZZ-004,2020CDJQY-A046)the State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-MS201903)The scholarship supports provided by the China Scholarship Council(CSC)。
文摘A failure criterion fully considering the anisotropy and hydration of shale is essential for shale formation stability evaluation.Thus,a novel failure criterion for hydration shale is developed by using Jaeger’s shear failure criterion to describe the anisotropy and using the shear strength reduction caused by clay minerals hydration to evaluate the hydration.This failure criterion is defined with four parameters in Jaeger’s shear failure criterion(S_(1),S_(2),a andφ),three hydration parameters(k,ω_(sh)andσ_(s))and two material size parameters(d and l0).The physical meanings and determining procedures of these parameters are described.The accuracy and applicability of this failure criterion are examined using the published experimental data,showing a cohesive agreement between the predicted values and the testing results,R^(2)=0.916 and AAREP(average absolute relative error percentage)of 9.260%.The error(|D_(p)|)is then discussed considering the effects ofβ(angle between bedding plane versus axial loading),moisture content and confining pressure,presenting that|Dp|increases whenβis closer to 30°,and|D_(p)|decreases with decreasing moisture content and with increasing confining pressure.Moreover,|D_(p)|is demonstrated as being sensitive to S1and being steady with decrease in the data set whenβis 0°,30°,45°and 90°.
基金the National Natural Science Foundation of China(32001470)the Scientific Research Fund of Hunan Provincial Education Department(21B0184)The Science and Technology Innovation Program of Hunan province(2021RC3088).
文摘Rice yield stability is a breeding goal,particularly for short-growth duration rice,but its underlying mechanisms remain unclear.In an attempt to identify the relationship between yield stability and source–sink characteristics in short-growth duration rice,a field experiment was conducted at three sites(Yueyang,Liuyang,and Hengyang)in 2021 and 2022.This study compared yield,yield components,source–sink characteristics,and their stability between two stable-yielding short-growth duration rice cultivars,Zhongzao 39(Z-39)and Lingliangyou 268(L-268),and two unstable-yielding short-growth duration rice cultivars,Zhongjiazao 17(Z-17)and Zhuliangyou 819(Z-819).The stability of agronomic parameters was represented by the coefficient of variation(CV).The respective CVs of yield in Z-17,Z-819,Z-39,and L-268 were 10.2%,10.1%,4.5%,and 5.7%in 2021 and 19.7%,15.0%,5.4%,and 6.5%in 2022.The respective CVs of grain weight were 6.3%,5.7%,3.4%,and 4.5%in Z-17,Z-819,Z-39,and L-268 in 2021,and 8.1%,6.3%,1.5%,and 0.8%in 2022.The mean source capacity per spikelet and pre-heading non-structural carbohydrate reserves per spikelet(NSC_(pre))were 7%–43%and7%–72%lower in Z-819 and Z-17than in L-268 and Z-39 in 2021 and 2022.The mean quantum yield of photosystem II photochemistry of leaf,leaf area index,and specific leaf weight of L-268 and Z-39 were higher than those of Z-819 and Z-17 at the heading stage.This study suggests that high NSC_(pre),caused by great leaf traits before heading,increases source capacity per spikelet and its stability,thereby increasing the stability of grain weight and yield.Increasing NSC_(pre)is critical for achieving grain weight and yield stability in short-growth duration rice.
文摘BACKGROUND Atrial fibrillation(AF)is one of the most common persistent arrhythmias among adult cardiovascular diseases.It is important to identify potential risk factors for AF.Members of the insulin-like growth factor(IGF)family exert a variety of effects on various cell types in the context of the pathogenesis of cardiovascular diseases,and previous population-based studies indicate associations between IGF family members and AF.However,the causal effects of IGF family members in AF have not been evaluated.assess genetic relationships between IGF family members and AF.METHODS MR was performed based on genome-wide association study(GWAS)datasets,and concentration levels of 14 IGF family members were retrieved.An initial MR analysis was conducted to identify single nucleotide polymorphisms potentially associated with IGF serum concentrations.A GWAS meta-analysis including 60620 AF cases and 970216 control participants of European ancestry was then conducted to identify AF causal effects.Two-sample MR packages were used to perform MR analysis in R.MR-Egger,weighted median(WM),and inverse va-riance weighted(IVW)methods were used.RESULTS Core Tip:Due to the high prevalence of atrial fibrillation(AF),and adverse outcomes related to it,it is important to identify risk factors associated with development of the condition.Insulin-like growth factor(IGF)family members exert a variety of effects on various cell types in the context of the pathogenesis of cardiovascular diseases,and previous population-based studies indicate associations between IGF family members and AF.However,the causal effects of IGF family members in AF have not been evaluated.The results of the current study provide novel insights on the pathogenesis of AF,and implic-ations of serum IGF family member concentrations when assessing the risk of AF.The study generated evidence on the potential roles of developmental pathological effects in the pathogenesis of AF.Further observational and experimental studies are critically needed.
文摘Background: Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of AKI in hospitalized patients. Contrast agents mainly cause acute kidney injury through hypoxic damage to renal parenchyma and toxic effects on renal capillaries and tubules. Patients with CI-AKI are more likely to experience adverse events, including longer hospital stay and costs, longer ICU stay, and higher mortality rates. This article elaborates on the definition, epidemiology, risk factors, pathogenesis, and prevention strategies of CI-AKI. Methods: We conducted an extensive literature search using contrast agents and AKI as keywords to identify relevant studies on CI-AKI. Conclusion: CI-AKI is a significant clinical challenge that requires a multifaceted approach to prevention and management. Understanding the risk factors, pathophysiology, and current best practices is essential for healthcare providers to optimize patient care and improve outcomes in those undergoing contrast-enhanced imaging procedures. Hydration therapy is currently the main prevention method, but antioxidants may also become a new strategy.
基金supported by the National Key Research and Development Program of China(2021YFD1401000)the International Science and Technology Cooperation Project of Shaanxi Provincial Key R&D Plan-Key Project(2020KWZ-009)+1 种基金the Shaanxi Innovation Team Project(2018TD-004)the 111 Project of the Ministry of Education of China(B07049).
文摘Although Blufensins(Bln)have important functions in the response of plants to biotic stress the precise functioning of Bln in wheat remains largely unknown.Here we isolated a Bln gene(TaBln4)from Suwon 11 infected by Puccinia striiformis f.sp.tritici(Pst).Expression of TaBln4 increased in host plants at the early stage of infection with a virulent Pst race(CYR31)but was unchanged in response to infection by an avirulent race(CYR23).Transcription levels of TaBln4 were also regulated by hormone and abiotic stresses.Expression of TaBln4 in tobacco leaves suppressed Bax-induced programmed cell death.Knockdown of TaBln4 by virus-induced gene silencing inhibited colonization of race CYR31 by increasing the accumulation of H2O2 and formation of hypersensitive responses(HR).Transient overexpression of TaBln4 by a transient overexpression system(BSMV-VOX)increased the susceptibility of wheat to CYR31.Results from bimolecular fluorescence complementation and pull-down assays demonstrated that TaBLN4 interacted with calmodulin.Taken together,our results suggest that TaBln4 negatively regulates resistance in wheat to Pst in a reactive oxygen species(ROS)-and HR-dependent manner.
基金National Natural Science Foundation of China,Grant/Award Numbers:21905265,52072322,U1930402,61974042National Science Foundation,Civil,Mechanical and Manufacturing Innovation,Grant/Award Number:1911905+3 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:WK2060140026Department of Science and Technology of Sichuan Province,Grant/Award Numbers:2019‐GH02‐00052‐HZ,2019YFG0220Scientific and Technological Innovation Foundation of Shunde Graduate School,Grant/Award Number:BK19BE024National Key Research and Development Program of China,Grant/Award Number:2017YFA0303403。
文摘A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes and 50μm Li anodes.Termed“CETHER-3,”this electrolyte is based on LiTFSI,LiDFOB,and LiBF4 with 5 vol%fluorinated ethylene carbonate in 1,2-dimethoxyethane.Commer-cial carbonate and state-of-the-art binary salt ether electrolytes were also tested as baselines.With CETHER-3,the electrochemical performance of the full-cell battery is among the most favorably reported in terms of high-voltage cycling stability.For example,LiNi_(x)Mn_(y)Co_(1-x-y)O_(2)(NMC)-Li metal cells retain 80%capacity at 430 cycles with a 4.4 V cut-off and 83%capacity at 100 cycles with a 4.5 V cut-off(charge at C/5,discharge at C/2).According to simulation by density functional theory and molecular dynamics,this favorable performance is an outcome of enhanced coordination between Li^(+)and the solvent/salt molecules.Combining advanced microscopy(high-resolution transmission electron microscopy,scanning electron microscopy)and surface science(X-ray photoelectron spectroscopy,time-of-fight secondary ion mass spectroscopy,Fourier-transform infrared spectroscopy,Raman spectroscopy),it is demonstrated that a thinner and more stable cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)are formed.The CEI is rich in lithium sulfide(Li_(2)SO_(3)),while the SEI is rich in Li_(3)N and LiF.During cycling,the CEI/SEI suppresses both the deleterious transformation of the cathode R-3m layered near-surface structure into disordered rock salt and the growth of lithium metal dendrites.
基金funded by the National Natural Science Foundation of China (81760776)the Natural Science Foundation of Inner Mongolia Autonomous Region (2018ZD13)+2 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region (2020MS08070)Science and technology development projects in key areas of Baotou science and technology plan (2020Z1016-3)Natural Science Foundation Project of Inner Mongolia Autonomous Region (2021MS03025)。
文摘Cymbaria daurica L. is a well-known traditional Mongolian medicine, which has been used to treat diabetesrelated conditions characterized by persistent thirst and hunger, copious urination, and weight loss. We aimed to investigate the protective effects of C. daurica extracts and phenylethanoid glycosides including verbascoside and isoacteoside on INS-1 cells. We discovered phenylethanoid glycosides from n-butanol extract with large content through extraction and separation. We continue to study the protective effects of phenylethanoid glycosides including verbascoside and isoacteoside on INS-1 cells. INS-1 cells were treated with C. daurica, cell viability assay, RNA-seq technology, superoxide dismutase activity and malonaldehyde content, quantitative real time-PCR and Western blot analysis were used to study the protective effects of C. daurica. Cell viability assay resulted that n-butanol extract and verbascoside, isoacteoside showed protective effects of C. daurica. According to the RNA-seq technology to identify the differentially expressed genes in INS-1 cells, the pathway of gene enrich the protective effect of C. daurica on oxidative stress. SOD activity and the content of MDA indicated that C. daurica could enhance the antioxidant capacity of INS-1 cells. Further investigation indicated C. daurica alleviate oxidative stress by inhibiting INS-1 cell apoptosis. C. daurica may play an anti-diabetic role by inhibiting islet cell apoptosis.
基金funded by Tianjin Science and Technology Major Special ProjectEngineering Public Health Science and Technology Major Special Project (No.21ZXGWSY00100)+5 种基金Tianjin Natural Science Foundation Key Projects (22JCZDJC00590,21JCQNJC00460)Tianjin Key Medical Discipline(Specialty) Construct Project (No.TJYXZDXK-032A)The Science and technology talent project of Tianjin Health Commission (No. RC20175)The Scientific Research Funding of Tianjin Medical University Chu Hsien-I Memorial Hospital (No.ZXY-ZDSYSZD-1)China International Medical Exchange Foundation Key Fund Project (No.Z-2017-26-1902)Tianjin Municipal Health Care Commission Scientific Research Fund Project (ZC20128)
文摘OBJECTIVE To evaluate the prospective association between cumulative resting heart rate(cumRHR)and rapid renal function decline(RRFD)in a cohort of individuals aged 60 and older.METHODS In the Tianjin Chronic Kidney Disease Cohort Study,the individuals who underwent three consecutive physical examinations between 2014 and 2017,with estimated glomerular filtration rate(eGFR)greater than 60 mL/min per 1.73 m2 and aged 60 years or older were enrolled.A total of 27,564 patients were prospectively followed up from January 1,2017 to December 31,2020.The 3-year cumRHR was calculated.The primary outcome was RRFD,defined as an annualized decline in eGFR of 5 mL/min per 1.73 m2 or greater.Logistic and restricted spline regression models and subgroup analysis were used to investigate the association of cumRHR with RRFD after adjusting for all confounders.RESULTS During a median follow-up of 3.2 years,a total of 4,347(15.77%)subjects developed RRFD.In fully-adjusted models,compared with the lowest quartile of cumRHR,the odds ratio(OR)for the highest was 1.44(1.28–1.61),P<0.001.Furthermore,each 1-standard deviation(27.97 beats/min per year)increment in cumRHR was associated with a 17%(P<0.001)increased risk of RRFD,with a linear positive correlation(P for non-linear=0.803).Participants with a 3-year cumRHR≥207(beats/min)*year(equivalent to≥69 beats/min per year in 3 years)were found to be at a higher risk of RRFD.CONCLUSIONS The cumRHR is significantly associated with a higher risk of RRFD among older adults.These results might provide an effective goal for managing and delaying the decline of renal function in the older adults.
基金supported by the National Key Research and Development Program of China(No.2018YFC1604002)the National Natural Science Foundation of China(No.U1836204,No.U1936208,No.U1936216,No.62002197).
文摘Cloud storage has been widely used to team work or cooperation devel-opment.Data owners set up groups,generating and uploading their data to cloud storage,while other users in the groups download and make use of it,which is called group data sharing.As all kinds of cloud service,data group sharing also suffers from hardware/software failures and human errors.Provable Data Posses-sion(PDP)schemes are proposed to check the integrity of data stored in cloud without downloading.However,there are still some unmet needs lying in auditing group shared data.Researchers propose four issues necessary for a secure group shared data auditing:public verification,identity privacy,collusion attack resis-tance and traceability.However,none of the published work has succeeded in achieving all of these properties so far.In this paper,we propose a novel block-chain-based ring signature PDP scheme for group shared data,with an instance deployed on a cloud server.We design a linkable ring signature method called Linkable Homomorphic Authenticable Ring Signature(LHARS)to implement public anonymous auditing for group data.We also build smart contracts to resist collusion attack in group auditing.The security analysis and performance evalua-tion prove that our scheme is both secure and efficient.
文摘As a typical building with ethnic and regional characteristics in southwest Chi-na, its construction skills contain rich local ecological wisdom. The detailed analysis of the climatic and geomorphological features of the Liangshan Yi nationality area shows that the thermal mass effect is the first choice for the passive adjustment strategy of residential dwellings. This study focuses on the typical representatives of traditional dwellings in Meigu County, analyzing the wisdom of ecological construction to improve the thermal mass effects of res-idential buildings at the macro (village), moderate (courtyard), and micro (building unit) levels. Based on this analysis, the study summarizes the “genetic factor library” of the ecological construction mode of traditional Yi residential dwellings. Finally, the measured data of the residential thermal environment and the simulation data of Ecotect software are used to study and judge the logic behind its ecological construction wisdom. The results show that the tradi-tional dwellings of the Yi nationality in Liangshan have six aspects of local en-vironmental knowledge to improve the thermal mass effects performance of buildings. The winter thermal environment of the house is comfortable, and the heat is sufficient;Rammed earth materials in residential buildings have more potent, powerful, and robust thermal mass effects performance than stone slabs and wooden boards.