有效的武器目标分配(weapon-target assignment,WTA)方法对减少作战损失,提高防御效果具有重要意义。针对防空资源分配问题建立合理的数学模型,以最大化目标毁伤效能和最小化雷达资源消耗为优化目标,同时考虑雷达通道数上限等多个约束,...有效的武器目标分配(weapon-target assignment,WTA)方法对减少作战损失,提高防御效果具有重要意义。针对防空资源分配问题建立合理的数学模型,以最大化目标毁伤效能和最小化雷达资源消耗为优化目标,同时考虑雷达通道数上限等多个约束,在基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)基础上进行改进,种群进化过程中自适应调整交叉与变异的概率以提高个体的质量,最终得到一组可供决策者使用的最优解集。实验结果表明:与其他多目标进化算法相比,该算法能得到适应度更高且分布性良好的结果,能够为防空导弹武器目标分配问题提供可行方案。展开更多
In the imaging observation system, imaging task scheduling is an important topic. Most scholars study the imaging task scheduling from the perspective of static priority, and only a few from the perspective of dynamic...In the imaging observation system, imaging task scheduling is an important topic. Most scholars study the imaging task scheduling from the perspective of static priority, and only a few from the perspective of dynamic priority. However,the priority of the imaging task is dynamic in actual engineering. To supplement the research on imaging observation, this paper proposes the task priority model, dynamic scheduling strategy and Heuristic algorithm. At first, this paper analyzes the relevant theoretical basis of imaging observation, decomposes the task priority into four parts, including target priority, imaging task priority, track, telemetry & control(TT&C)requirement priority and data transmission requirement priority, summarizes the attribute factors that affect the above four types of priority in detail, and designs the corresponding priority model. Then, this paper takes the emergency tasks scheduling problem as the background, proposes the dynamic scheduling strategy and heuristic algorithm. Finally, the task priority model,dynamic scheduling strategy and heuristic algorithm are verified by experiments.展开更多
How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation re...How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation requirements,the importance of satellite autonomous task scheduling research has gradually increased.This article first gives the problem description and mathematical model for the satellite autonomous task scheduling and then follows the steps of"satellite autonomous task scheduling,centralized autonomous collaborative task scheduling architecture,distributed autonomous collaborative task scheduling architecture,solution algorithm".Finally,facing the complex and changeable environment situation,this article proposes the future direction of satellite autonomous task scheduling.展开更多
In order to solve the complex optimization problem dealing with uncertain phenomenon effectively, this paper presents a probability simulation optimization approach using orthogonal genetic algorithm. This approach sy...In order to solve the complex optimization problem dealing with uncertain phenomenon effectively, this paper presents a probability simulation optimization approach using orthogonal genetic algorithm. This approach synthesizes the computer simulation technology, orthogonal genetic algorithm and statistical test method faultlessly, which can solve complex optimization problem effectively. In this paper, the author gives the correlative conception of probability simulation optimization and describes the probability simulation optimization approach using orthogonal genetic algorithm in detail. Theoretically speaking, it has a strong rationality and maneuverability that can apply probability method in solving the complex optimization problems with uncertain phenomenon. In demonstration, the optimization performance of this method is better than other traditional methods. Simulation resuh suggests that the approach referred to this paper is feasible, correct and valid.展开更多
The traveling salesman problem (TSP) is a classical optimization problem and it is one of a class of NP- Problem. This paper presents a new method named multiagent approach based genetic algorithm and ant colony sys...The traveling salesman problem (TSP) is a classical optimization problem and it is one of a class of NP- Problem. This paper presents a new method named multiagent approach based genetic algorithm and ant colony system to solve the TSP. Three kinds of agents with different function were designed in the multi-agent architecture proposed by this paper. The first kind of agent is ant colony optimization agent and its function is generating the new solution continuously. The second kind of agent is selection agent, crossover agent and mutation agent, their function is optimizing the current solutions group. The third kind of agent is fast local searching agent and its function is optimizing the best solution from the beginning of the trial. At the end of this paper, the experimental results have shown that the proposed hybrid ap proach has good performance with respect to the quality of solution and the speed of computation.展开更多
文摘有效的武器目标分配(weapon-target assignment,WTA)方法对减少作战损失,提高防御效果具有重要意义。针对防空资源分配问题建立合理的数学模型,以最大化目标毁伤效能和最小化雷达资源消耗为优化目标,同时考虑雷达通道数上限等多个约束,在基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)基础上进行改进,种群进化过程中自适应调整交叉与变异的概率以提高个体的质量,最终得到一组可供决策者使用的最优解集。实验结果表明:与其他多目标进化算法相比,该算法能得到适应度更高且分布性良好的结果,能够为防空导弹武器目标分配问题提供可行方案。
基金supported by the National Natural Science Foundation of China(61773120,61473301,71501180,71501179,61603400)。
文摘In the imaging observation system, imaging task scheduling is an important topic. Most scholars study the imaging task scheduling from the perspective of static priority, and only a few from the perspective of dynamic priority. However,the priority of the imaging task is dynamic in actual engineering. To supplement the research on imaging observation, this paper proposes the task priority model, dynamic scheduling strategy and Heuristic algorithm. At first, this paper analyzes the relevant theoretical basis of imaging observation, decomposes the task priority into four parts, including target priority, imaging task priority, track, telemetry & control(TT&C)requirement priority and data transmission requirement priority, summarizes the attribute factors that affect the above four types of priority in detail, and designs the corresponding priority model. Then, this paper takes the emergency tasks scheduling problem as the background, proposes the dynamic scheduling strategy and heuristic algorithm. Finally, the task priority model,dynamic scheduling strategy and heuristic algorithm are verified by experiments.
基金supported by the National Natural Science Foundation of China(72001212,61773120)Hunan Postgraduate Research Innovation Project(CX20210031)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(2014-92)the Innovation Team of Guangdong Provincial Department of Education(2018KCXTD031)。
文摘How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation requirements,the importance of satellite autonomous task scheduling research has gradually increased.This article first gives the problem description and mathematical model for the satellite autonomous task scheduling and then follows the steps of"satellite autonomous task scheduling,centralized autonomous collaborative task scheduling architecture,distributed autonomous collaborative task scheduling architecture,solution algorithm".Finally,facing the complex and changeable environment situation,this article proposes the future direction of satellite autonomous task scheduling.
基金Supported by the National Natural Science Foundation of China(70272002) .
文摘In order to solve the complex optimization problem dealing with uncertain phenomenon effectively, this paper presents a probability simulation optimization approach using orthogonal genetic algorithm. This approach synthesizes the computer simulation technology, orthogonal genetic algorithm and statistical test method faultlessly, which can solve complex optimization problem effectively. In this paper, the author gives the correlative conception of probability simulation optimization and describes the probability simulation optimization approach using orthogonal genetic algorithm in detail. Theoretically speaking, it has a strong rationality and maneuverability that can apply probability method in solving the complex optimization problems with uncertain phenomenon. In demonstration, the optimization performance of this method is better than other traditional methods. Simulation resuh suggests that the approach referred to this paper is feasible, correct and valid.
基金Supported by the National Natural Science Foun-dation of China (69973016)
文摘The traveling salesman problem (TSP) is a classical optimization problem and it is one of a class of NP- Problem. This paper presents a new method named multiagent approach based genetic algorithm and ant colony system to solve the TSP. Three kinds of agents with different function were designed in the multi-agent architecture proposed by this paper. The first kind of agent is ant colony optimization agent and its function is generating the new solution continuously. The second kind of agent is selection agent, crossover agent and mutation agent, their function is optimizing the current solutions group. The third kind of agent is fast local searching agent and its function is optimizing the best solution from the beginning of the trial. At the end of this paper, the experimental results have shown that the proposed hybrid ap proach has good performance with respect to the quality of solution and the speed of computation.