A series of triethylammonium-based chlorogallate(Ⅲ) ionic liquids with varied Lewis acidity was synthesized, characterized, and firstly applied to isobutane alkylation. The [Et3NHC1]-GaCl3 with XGaCl3 =0.65 display...A series of triethylammonium-based chlorogallate(Ⅲ) ionic liquids with varied Lewis acidity was synthesized, characterized, and firstly applied to isobutane alkylation. The [Et3NHC1]-GaCl3 with XGaCl3 =0.65 displayed a potential catalytic activity for the alkylation. The addition of copper halide into the chlorogallate(Ⅲ) ionic liquids dramatically enhanced the alkylation reac- tion. Up to 70.1% Cs selectivity and 91.3 RON were achieved with the [Et3NHC1]-GaC13-CuC1 (XGaCl3 = 0.65, CuCI = 5% tool) under 0.5 MPa, 900 r/min, 15 min, 288 K using the industrial C4 cut (isobutane/butene = 10). These results indicate that the chlorogallate(Ⅲ) system may be used as a promising catalyst for the C4 alkylation.展开更多
基金the financial support from the Beijing Municipal Natural Science Foundation (2122052)Key Program of National Natural Science Foundation of China (21036007)National Basic Research Program of China (2009CB219904)
文摘A series of triethylammonium-based chlorogallate(Ⅲ) ionic liquids with varied Lewis acidity was synthesized, characterized, and firstly applied to isobutane alkylation. The [Et3NHC1]-GaCl3 with XGaCl3 =0.65 displayed a potential catalytic activity for the alkylation. The addition of copper halide into the chlorogallate(Ⅲ) ionic liquids dramatically enhanced the alkylation reac- tion. Up to 70.1% Cs selectivity and 91.3 RON were achieved with the [Et3NHC1]-GaC13-CuC1 (XGaCl3 = 0.65, CuCI = 5% tool) under 0.5 MPa, 900 r/min, 15 min, 288 K using the industrial C4 cut (isobutane/butene = 10). These results indicate that the chlorogallate(Ⅲ) system may be used as a promising catalyst for the C4 alkylation.