疏水力作为胶体物理化学及生物大分子体系中重要作用力,具有典型的多尺度作用程特征,其中亚稳态液膜空化气泡桥接诱发长程疏水力和固液界面水分子重排熵效应诱导短程疏水力假说占据着当前学术主流,但仍缺少系统理论研究.为进一步阐明基...疏水力作为胶体物理化学及生物大分子体系中重要作用力,具有典型的多尺度作用程特征,其中亚稳态液膜空化气泡桥接诱发长程疏水力和固液界面水分子重排熵效应诱导短程疏水力假说占据着当前学术主流,但仍缺少系统理论研究.为进一步阐明基于亚稳态液膜空化的长程疏水力作用机制,借助原子力显微镜(AFM)及分子动力学模拟对全氟辛基三氯硅烷疏水化颗粒与表面间长程疏水力进行了系统研究.AFM力测试结果表明:长程疏水力作用程随接近次数增加而逐渐增大并逐渐趋于稳定,第十次接触时进针曲线跳入黏附距离达到502.01 nm,退针曲线中观察到了预示空化气泡毛细桥断裂的台阶.此外,发现经典毛细力数学模型可以较好地拟合进针曲线,通过计算得到毛细桥体积约为0.30μm^(3),从理论角度直接验证了亚稳态液膜空化气泡毛细桥的存在.进一步借助GROM ACS(GROningen M A chine for Chemical Simulations)大尺度牵引分子动力学模拟从分子尺度探索疏水颗粒分离过程中空化气泡毛细桥产生、演化过程与力学行为的内在关联机制,结果表明:疏水颗粒从基板表面跳出分离瞬间,产生的局部压降吸引氮气分子向液膜内部扩散从而形成空化气泡毛细桥,同时,在毛细桥断裂时刻在计算弹簧势力曲线中观察到了力跳跃行为.最后研究了溶液气体含量对长程疏水力的影响规律,发现气体分子含量和空化气泡毛细桥体积增长速率与毛细桥拉伸断裂长度呈现正相关关系,进一步表明了长程疏水力的气体浓度依赖效应.基于亚稳态液膜空化的长程疏水力作用机制的揭示有助于进一步完善胶体物理化学及生物大分子间相互作用理论体系,同时对调控实际矿物浮选过程具有重要指导意义.展开更多
The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces...The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (-87.36 mN/m) is significantly larger than that between water and coal (-32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of-56.30 mN/m.展开更多
文摘疏水力作为胶体物理化学及生物大分子体系中重要作用力,具有典型的多尺度作用程特征,其中亚稳态液膜空化气泡桥接诱发长程疏水力和固液界面水分子重排熵效应诱导短程疏水力假说占据着当前学术主流,但仍缺少系统理论研究.为进一步阐明基于亚稳态液膜空化的长程疏水力作用机制,借助原子力显微镜(AFM)及分子动力学模拟对全氟辛基三氯硅烷疏水化颗粒与表面间长程疏水力进行了系统研究.AFM力测试结果表明:长程疏水力作用程随接近次数增加而逐渐增大并逐渐趋于稳定,第十次接触时进针曲线跳入黏附距离达到502.01 nm,退针曲线中观察到了预示空化气泡毛细桥断裂的台阶.此外,发现经典毛细力数学模型可以较好地拟合进针曲线,通过计算得到毛细桥体积约为0.30μm^(3),从理论角度直接验证了亚稳态液膜空化气泡毛细桥的存在.进一步借助GROM ACS(GROningen M A chine for Chemical Simulations)大尺度牵引分子动力学模拟从分子尺度探索疏水颗粒分离过程中空化气泡毛细桥产生、演化过程与力学行为的内在关联机制,结果表明:疏水颗粒从基板表面跳出分离瞬间,产生的局部压降吸引氮气分子向液膜内部扩散从而形成空化气泡毛细桥,同时,在毛细桥断裂时刻在计算弹簧势力曲线中观察到了力跳跃行为.最后研究了溶液气体含量对长程疏水力的影响规律,发现气体分子含量和空化气泡毛细桥体积增长速率与毛细桥拉伸断裂长度呈现正相关关系,进一步表明了长程疏水力的气体浓度依赖效应.基于亚稳态液膜空化的长程疏水力作用机制的揭示有助于进一步完善胶体物理化学及生物大分子间相互作用理论体系,同时对调控实际矿物浮选过程具有重要指导意义.
基金Project(2014BAB01B03) supported by the National Key Technology R&D Program During the 12th Five-Yean Plan of China Project(51774286) supported by the National Natural Science Foundation of China Project(BK20150192) supported by the Natural Science Foundation of Jiaaagsu Province, China
文摘The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (-87.36 mN/m) is significantly larger than that between water and coal (-32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of-56.30 mN/m.