The overuse of nitrogen(N)fertilizer in fields has increased production costs and raised environmental concerns.Increasing the N use efficiency(NUE)of rice varieties is crucial for sustainable agriculture.Here we repo...The overuse of nitrogen(N)fertilizer in fields has increased production costs and raised environmental concerns.Increasing the N use efficiency(NUE)of rice varieties is crucial for sustainable agriculture.Here we report the cloning and characterization of OsNPF3.1,a gene that controls rice NUE.An amino acid mutation in the OsNPF3.1 coding region caused different NUEs in wild and cultivated rice.OsNPF3.1,which is expressed mainly in the aerial parts of rice,also affects rice plant height,heading date,and thousand-grain weight.The OsNPF3.1 protein is located in the plasma membrane.When OsNPF3.1 was subjected to artificial selection,two naturally varying loci were associated with NUE,of which OsNPF3.1Chr6_8741040differed between indica and japonica rice.OsNPF3.1 can be used as a new target gene for breeding rice varieties with high NUE.展开更多
Plant height(PH)is a complex trait regulated by the environment and multiple genes.PH directly affects crop yield,harvest index,and lodging resistance.From plant dwarf mutants,many genes related to PH have been identi...Plant height(PH)is a complex trait regulated by the environment and multiple genes.PH directly affects crop yield,harvest index,and lodging resistance.From plant dwarf mutants,many genes related to PH have been identified and described.Nonetheless,the molecular mechanism of height regulation in high-culm rice mutants has not been well studied.By using transcriptome and weighted gene co-expression network analysis(WGCNA),we identified the differentially expressed genes(DEGs)between high-culm rice mutants(MUT)and wild-type(WT)and explored the key pathways and potential candidate genes involved in PH regulation.Transcriptome analysis identified a total of 2,184 DEGs,of which 1,317 were identified at the jointing stage and 1,512 were identified at the heading stage.Kyoto Encyclopedia of Genes and Genomes enrichment showed that the enrichment pathways were mainly involved in plant hormone signal transduction,ABC transportation,and steroid hormone biosynthesis.Among these metabolic pathways,LOC_Os05g43910 and LOC_Os01g35030 were auxin(IAA)-related genes,up-regulated in MUT and LOC_Os02g08500(LEPTO1),LOC_Os11g04720,and LOC_Os12g04500 were cytokinin(CK)-related genes,downregulated in MUT.The WGCNA identified four modules(light cyan,dark grey,grey,and pale turquoise)closely related to PH,and seven key genes were screened from these modules,of which two were up-regulated cell wallrelated genes(LOC_Os01g26174(OsWAK5),LOC_Os06g05050)in MUT,and one gibberellic acid(GA)gene(LOC_Os06g37364,OsKO2)was also up-regulated.These genes might be closely related to PH regulation.These findings help us better understand the transcriptional regulation of rice plant growth and development and provide a theoretical basis for mapping and cloning the PH regulatory genes.展开更多
Integrated computational materials engineering(ICME)has emerged to be one of the most powerful materials genome engineering(MGE)approaches in designing new materials and manufacturing processes in recent years.It has ...Integrated computational materials engineering(ICME)has emerged to be one of the most powerful materials genome engineering(MGE)approaches in designing new materials and manufacturing processes in recent years.It has successfully deployed many new products for the electronic,automotive,and aerospace industries.This paper reviews the current status of research on first principles in the design of high-strength Mg alloys,discusses the application of crystal plasticity finite element models to the microscale slip,twinning,microstructure morphology,texture evolution,and macroscopic forming of Mg alloys,and introduces the research progress of crystal plasticity finite element models and phase field models,meta cellular automata models and first principles coupled models respectively,around the need for multi-scale coupled simulations of Mg alloys.The key technology obstacles of integrating the first principles,crystal plasticity finite element,and microstructure models for Mg alloys have been solved.This paper can provide a reference for the design of new Mg alloy compositions and the development of high-performance Mg alloys.展开更多
Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys...Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys design and development,which enables the design and development of Al alloys to upgrade from traditional empirical to the integration of compositionprocess-structure-mechanical property,thus greatly accelerating its development speed and reducing its development cost.This study combines calculation of phase diagram(CALPHAD),Finite element calculations,first principle calculations,and microstructure characterization methods to predict and regulate the formation and structure of composite precipitates from the design of highmodulus Al alloy compositions and optimize the casting process parameters to inhibit the formation of micropore defects in the casting process,and the final tensile strength of Al alloys reaches420 MPa and Young's modulus reaches more than 88 GPa,which achieves the design goal of the high strength and modulus Al alloys,and establishes a new mode of the design and development of the strength/modulus Al alloys.展开更多
In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile ...In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile communications,which fully utilizes the characteristics of spatial modulation(SM)and orthogonal time frequency space(OTFS)transmission.The detailed system design and signal processing of the SM-OTFS system have been presented.The closed-form expressions of the average symbol error rate(ASER)and average bit error rate(ABER)of the SM-OTFS system have been derived over the delay-Doppler channel with the help of the union bounding technique and moment-generating function(MGF).Meanwhile,the system complexity has been evaluated.Numerical results verify the correctness of the theoretical ASER and ABER analysis of the SM-OTFS system in the high signal-to-noise ratio(SNR)regions and also show that the SM-OTFS system outperforms the traditional SM based orthogonal frequency division multiplexing(SM-OFDM)system with limited complexity increase under mobile conditions,especially in high mobility scenarios.展开更多
In this paper,a fast orthogonal matching pursuit(OMP)algorithm based on optimized iterative process is proposed for sparse time-varying underwater acoustic(UWA)channel estimation.The channel estimation consists of cal...In this paper,a fast orthogonal matching pursuit(OMP)algorithm based on optimized iterative process is proposed for sparse time-varying underwater acoustic(UWA)channel estimation.The channel estimation consists of calculating amplitude,delay and Doppler scaling factor of each path using the received multi-path signal.This algorithm,called as OIP-FOMP,can reduce the computationally complexity of the traditional OMP algorithm and maintain accuracy in the presence of severe inter-carrier interference that exists in the time-varying UWA channels.In this algorithm,repeated inner product operations used in the OMP algorithm are removed by calculating the candidate path signature Hermitian inner product matrix in advance.Efficient QR decomposition is used to estimate the path amplitude,and the problem of reconstruction failure caused by inaccurate delay selection is avoided by optimizing the Hermitian inner product matrix.Theoretical analysis and simulation results show that the computational complexity of the OIP-FOMP algorithm is reduced by about 1/4 compared with the OMP algorithm,without any loss of accuracy.展开更多
Rice has different colors of pericarp, such as red, white and black. Red rice pericarp is rich in proanthocyanins, which have antioxidant properties and are beneficial to human health. In the present study, we analyze...Rice has different colors of pericarp, such as red, white and black. Red rice pericarp is rich in proanthocyanins, which have antioxidant properties and are beneficial to human health. In the present study, we analyzed the red-pericarp gene Rc of 419 rice landraces in Guangxi by genome-wide association study (GWAS), and validated that the Rc gene regulated the red periearp trait in flee. By analyzing the genomie DNA of 97 red-pericarp flee eultivars, we identified two new alleles in C139 and C323. Then, the exons of Rcc'9 and Rcc were sequenced with Sanger method, and the results demonstrated that the natural mutations within Re ene resulted in the two alleles Rcc and Rcc.展开更多
The Ni-based Udemit720Li superalloy tends to form largeγ/γ'eutectic on grain boundaries(GBs)during solidification due to the addition of excessive Al and Ti elements,which provides convenience to study the effec...The Ni-based Udemit720Li superalloy tends to form largeγ/γ'eutectic on grain boundaries(GBs)during solidification due to the addition of excessive Al and Ti elements,which provides convenience to study the effect of carbide andγ/γ'eutectic on crack initiation and propagation during tensile process.In this paper,Udemit720Li superalloy samples were prepared by induction melting casting method,arc melting and suction casting method.The microstructure,tensile properties and mechanism of crack initiation and propagation in Ni-based superalloy fabricated by two methods are investigated.The results exhibitγ/γ'eutectic accelerates the stress concentration at GB and thus leads to premature fracture failure.The samples with grain-boundary eutectic have higher strain hardening rate,but their cumulative and local misorientations are lower.For samples without eutectic at GB,the primary crack initiates at grain-boundary carbide along GB and extends along GB or into grain matrix,and exhibits better deformation performance and dislocation storage capacity within grains.展开更多
Aluminum-lithium(Al-Li)alloy is one of the most promising lightweight structural materials in the aeronautic and aerospace industries.The key to achieving their excellent mechanical properties lies in tailoring T1 str...Aluminum-lithium(Al-Li)alloy is one of the most promising lightweight structural materials in the aeronautic and aerospace industries.The key to achieving their excellent mechanical properties lies in tailoring T1 strengthening precipitates;however,the nucleation of such nanoparticles remains unknown.Combining atomic resolution HAADF-STEM with first-principles calculations based on the density functional theory(DFT),here,we report a counterintuitive nucleation mechanism of the T1 that evolves from an Eshelby inclusion with unstable stacking faults.This precursor is accelerated by Ag-Mg clusters to reduce the barrier,forming the structural framework.In addition,these Ag-Mg clusters trap the free Cu and Li to prepare the chemical compositions for T1.Our findings provide a new perspective on the phase transformations of complex precipitates through solute clusters in terms of geometric structure and chemical bonding functions.展开更多
For decades,it has been well accepted that every 1 wt.%Li addition to Al will reduce Al alloy’s density by 3%and increase its Young’s modulus by 6%.However,the fundamental mechanism of modulus improve-ments stays co...For decades,it has been well accepted that every 1 wt.%Li addition to Al will reduce Al alloy’s density by 3%and increase its Young’s modulus by 6%.However,the fundamental mechanism of modulus improve-ments stays controversial though all studies agreed that the contribution of such a substantial boosting comes from Li-rich clusters either in solid solution or precipitations.In this study,we experimentally produce nano-sized Li-rich clusters by non-equilibrium solidification using centrifugal casting and trace their evolutions as a function of subsequent heat treatments.High-resolution transmission electron mi-croscopy(HRTEM)reveals a further decrease in the lattice constants of Li-rich regions from the as-cast(0.406 nm),solid solution(0.405 nm)to the aged state(0.401 nm),while Young’s modulus of the Al-Li al-loy reaches 89.16 GPa.Small-angle neutron scattering(SANS)experiments and first-principle calculations based on density functional theory have shown both the bond strength around precipitates and the size of those Li-rich region dominate Young’s modulus.At the beginning,it is volumetric compression due to Li addition that increases modulus,tightening the Al-Al potential curves.In the end,it is the Al-Al and Al-Li valence bonds in Al 3 Li at large size and high-volume fraction which increase its second derivative of internal energy and thus Young’s modulus.展开更多
Here,we compare the porosity,microstructure and mechanical property of 4047 Al–Si alloys prepared by wire-arc additive manufacturing(WAAM)and conventional casting.X-ray microscopy reveals that WAAM causes a higher vo...Here,we compare the porosity,microstructure and mechanical property of 4047 Al–Si alloys prepared by wire-arc additive manufacturing(WAAM)and conventional casting.X-ray microscopy reveals that WAAM causes a higher volume fraction of gas pores in comparison with conventional casting.Effective refi nements ofα-Al dendrites,eutectic Si particles and Ferich intermetallic compounds are achieved by WAAM,resulting from its rapid solidifi cation process.Both ultimate tensile strength(UTS,up to 205.6 MPa)and yield stress(YS,up to 98.0 MPa)are improved by WAAM at the expense of elongation after fracture.The mechanical property anisotropy between scanning direction and build direction is minimal for alloys via WAAM.Additional microstructure refi nement and strength enhancement are enabled by increasing the travel speed of welding torch from 300 to 420 mm/min.展开更多
基金supported by the National Natural Science Foundation of China(32060476 and 31860371)Guangxi Department of Science and Technology(AA22068087-4)+3 种基金Guangxi Natural Science Foundation of China(2015GXNSFAA139054,2018GXNSFAA138124,and 2020GXNSFAA259041)Guangxi Ministry of Science and Technology(AB21238009)Special Fund of Local Science and Technology Development for the Central Guidance(ZY21195034)Guangxi Academy of Agricultural Sciences(2021JM04,2021JM49,2021YT030,QN-25,and QN-35)。
文摘The overuse of nitrogen(N)fertilizer in fields has increased production costs and raised environmental concerns.Increasing the N use efficiency(NUE)of rice varieties is crucial for sustainable agriculture.Here we report the cloning and characterization of OsNPF3.1,a gene that controls rice NUE.An amino acid mutation in the OsNPF3.1 coding region caused different NUEs in wild and cultivated rice.OsNPF3.1,which is expressed mainly in the aerial parts of rice,also affects rice plant height,heading date,and thousand-grain weight.The OsNPF3.1 protein is located in the plasma membrane.When OsNPF3.1 was subjected to artificial selection,two naturally varying loci were associated with NUE,of which OsNPF3.1Chr6_8741040differed between indica and japonica rice.OsNPF3.1 can be used as a new target gene for breeding rice varieties with high NUE.
基金supported by the National Natural Science Foundation of China(31760428,31860371,and 32060476)Guangxi Natural Science Foundation of China(2020GXNSFAA259041)+1 种基金Guangxi Science and Technology Project(Guike AB21238009)Guangxi Academy of Agricultural Sciences Foundation(2021JM04,JM49,YT030,QN-11,14,20,29,and 35).
文摘Plant height(PH)is a complex trait regulated by the environment and multiple genes.PH directly affects crop yield,harvest index,and lodging resistance.From plant dwarf mutants,many genes related to PH have been identified and described.Nonetheless,the molecular mechanism of height regulation in high-culm rice mutants has not been well studied.By using transcriptome and weighted gene co-expression network analysis(WGCNA),we identified the differentially expressed genes(DEGs)between high-culm rice mutants(MUT)and wild-type(WT)and explored the key pathways and potential candidate genes involved in PH regulation.Transcriptome analysis identified a total of 2,184 DEGs,of which 1,317 were identified at the jointing stage and 1,512 were identified at the heading stage.Kyoto Encyclopedia of Genes and Genomes enrichment showed that the enrichment pathways were mainly involved in plant hormone signal transduction,ABC transportation,and steroid hormone biosynthesis.Among these metabolic pathways,LOC_Os05g43910 and LOC_Os01g35030 were auxin(IAA)-related genes,up-regulated in MUT and LOC_Os02g08500(LEPTO1),LOC_Os11g04720,and LOC_Os12g04500 were cytokinin(CK)-related genes,downregulated in MUT.The WGCNA identified four modules(light cyan,dark grey,grey,and pale turquoise)closely related to PH,and seven key genes were screened from these modules,of which two were up-regulated cell wallrelated genes(LOC_Os01g26174(OsWAK5),LOC_Os06g05050)in MUT,and one gibberellic acid(GA)gene(LOC_Os06g37364,OsKO2)was also up-regulated.These genes might be closely related to PH regulation.These findings help us better understand the transcriptional regulation of rice plant growth and development and provide a theoretical basis for mapping and cloning the PH regulatory genes.
基金supported by National Natural Science Foundation of China(No.52073030)National Natural Science Foundation of China-Guangxi Joint Fund(No.U20A20276)。
文摘Integrated computational materials engineering(ICME)has emerged to be one of the most powerful materials genome engineering(MGE)approaches in designing new materials and manufacturing processes in recent years.It has successfully deployed many new products for the electronic,automotive,and aerospace industries.This paper reviews the current status of research on first principles in the design of high-strength Mg alloys,discusses the application of crystal plasticity finite element models to the microscale slip,twinning,microstructure morphology,texture evolution,and macroscopic forming of Mg alloys,and introduces the research progress of crystal plasticity finite element models and phase field models,meta cellular automata models and first principles coupled models respectively,around the need for multi-scale coupled simulations of Mg alloys.The key technology obstacles of integrating the first principles,crystal plasticity finite element,and microstructure models for Mg alloys have been solved.This paper can provide a reference for the design of new Mg alloy compositions and the development of high-performance Mg alloys.
基金supported by the National Natural Science Foundation of China(No.52073030)。
文摘Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys design and development,which enables the design and development of Al alloys to upgrade from traditional empirical to the integration of compositionprocess-structure-mechanical property,thus greatly accelerating its development speed and reducing its development cost.This study combines calculation of phase diagram(CALPHAD),Finite element calculations,first principle calculations,and microstructure characterization methods to predict and regulate the formation and structure of composite precipitates from the design of highmodulus Al alloy compositions and optimize the casting process parameters to inhibit the formation of micropore defects in the casting process,and the final tensile strength of Al alloys reaches420 MPa and Young's modulus reaches more than 88 GPa,which achieves the design goal of the high strength and modulus Al alloys,and establishes a new mode of the design and development of the strength/modulus Al alloys.
基金in part by the National Natural Science Foundation of China under Grant 61771291,Grant 61671278in part by the Key Research and Development Project of Shandong Province under Grant 2018GGX101009,Grant 2019TSLH0202,Grant 2020CXGC010109+1 种基金in part by the National Nature Science Foundation of China for Excellent Young Scholars under Grant 61622111in part by the Project of International Cooperation and Exchanges NSFC under Grant 61860206005.
文摘In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile communications,which fully utilizes the characteristics of spatial modulation(SM)and orthogonal time frequency space(OTFS)transmission.The detailed system design and signal processing of the SM-OTFS system have been presented.The closed-form expressions of the average symbol error rate(ASER)and average bit error rate(ABER)of the SM-OTFS system have been derived over the delay-Doppler channel with the help of the union bounding technique and moment-generating function(MGF).Meanwhile,the system complexity has been evaluated.Numerical results verify the correctness of the theoretical ASER and ABER analysis of the SM-OTFS system in the high signal-to-noise ratio(SNR)regions and also show that the SM-OTFS system outperforms the traditional SM based orthogonal frequency division multiplexing(SM-OFDM)system with limited complexity increase under mobile conditions,especially in high mobility scenarios.
基金supported in part by the National Natural Science Foundation of China(NSFC)(No.U1806201,61671261)Project of Shandong Province Higher Educational Science and Technology Program(No.J17KA058,J17KB154).
文摘In this paper,a fast orthogonal matching pursuit(OMP)algorithm based on optimized iterative process is proposed for sparse time-varying underwater acoustic(UWA)channel estimation.The channel estimation consists of calculating amplitude,delay and Doppler scaling factor of each path using the received multi-path signal.This algorithm,called as OIP-FOMP,can reduce the computationally complexity of the traditional OMP algorithm and maintain accuracy in the presence of severe inter-carrier interference that exists in the time-varying UWA channels.In this algorithm,repeated inner product operations used in the OMP algorithm are removed by calculating the candidate path signature Hermitian inner product matrix in advance.Efficient QR decomposition is used to estimate the path amplitude,and the problem of reconstruction failure caused by inaccurate delay selection is avoided by optimizing the Hermitian inner product matrix.Theoretical analysis and simulation results show that the computational complexity of the OIP-FOMP algorithm is reduced by about 1/4 compared with the OMP algorithm,without any loss of accuracy.
基金Supported by The National Key Research and Development Program of China(2016YFD0100101-03)Science Research and Technology Development Program of Guangxi(AB16380117)+1 种基金the Fund for Talent Team of Guangxi Academy of Agricultural Sciences(2015YT15)the Special Fund for Basic Science Research of Guangxi Academy of Agricultural Sciences(2015JZ16,2015JZ17,2017YM18)
文摘Rice has different colors of pericarp, such as red, white and black. Red rice pericarp is rich in proanthocyanins, which have antioxidant properties and are beneficial to human health. In the present study, we analyzed the red-pericarp gene Rc of 419 rice landraces in Guangxi by genome-wide association study (GWAS), and validated that the Rc gene regulated the red periearp trait in flee. By analyzing the genomie DNA of 97 red-pericarp flee eultivars, we identified two new alleles in C139 and C323. Then, the exons of Rcc'9 and Rcc were sequenced with Sanger method, and the results demonstrated that the natural mutations within Re ene resulted in the two alleles Rcc and Rcc.
基金This work was supported by the USTB University of Science and Technology Beijing。
文摘The Ni-based Udemit720Li superalloy tends to form largeγ/γ'eutectic on grain boundaries(GBs)during solidification due to the addition of excessive Al and Ti elements,which provides convenience to study the effect of carbide andγ/γ'eutectic on crack initiation and propagation during tensile process.In this paper,Udemit720Li superalloy samples were prepared by induction melting casting method,arc melting and suction casting method.The microstructure,tensile properties and mechanism of crack initiation and propagation in Ni-based superalloy fabricated by two methods are investigated.The results exhibitγ/γ'eutectic accelerates the stress concentration at GB and thus leads to premature fracture failure.The samples with grain-boundary eutectic have higher strain hardening rate,but their cumulative and local misorientations are lower.For samples without eutectic at GB,the primary crack initiates at grain-boundary carbide along GB and extends along GB or into grain matrix,and exhibits better deformation performance and dislocation storage capacity within grains.
基金supported by the National Natural Science Foundation of China(grant number 52073030)National Natural Science Foundation of China-Guangxi Joint Fund(U20A20276).
文摘Aluminum-lithium(Al-Li)alloy is one of the most promising lightweight structural materials in the aeronautic and aerospace industries.The key to achieving their excellent mechanical properties lies in tailoring T1 strengthening precipitates;however,the nucleation of such nanoparticles remains unknown.Combining atomic resolution HAADF-STEM with first-principles calculations based on the density functional theory(DFT),here,we report a counterintuitive nucleation mechanism of the T1 that evolves from an Eshelby inclusion with unstable stacking faults.This precursor is accelerated by Ag-Mg clusters to reduce the barrier,forming the structural framework.In addition,these Ag-Mg clusters trap the free Cu and Li to prepare the chemical compositions for T1.Our findings provide a new perspective on the phase transformations of complex precipitates through solute clusters in terms of geometric structure and chemical bonding functions.
基金This work is financially supported by the National Natural Science Foundation of China(No.52073030).
文摘For decades,it has been well accepted that every 1 wt.%Li addition to Al will reduce Al alloy’s density by 3%and increase its Young’s modulus by 6%.However,the fundamental mechanism of modulus improve-ments stays controversial though all studies agreed that the contribution of such a substantial boosting comes from Li-rich clusters either in solid solution or precipitations.In this study,we experimentally produce nano-sized Li-rich clusters by non-equilibrium solidification using centrifugal casting and trace their evolutions as a function of subsequent heat treatments.High-resolution transmission electron mi-croscopy(HRTEM)reveals a further decrease in the lattice constants of Li-rich regions from the as-cast(0.406 nm),solid solution(0.405 nm)to the aged state(0.401 nm),while Young’s modulus of the Al-Li al-loy reaches 89.16 GPa.Small-angle neutron scattering(SANS)experiments and first-principle calculations based on density functional theory have shown both the bond strength around precipitates and the size of those Li-rich region dominate Young’s modulus.At the beginning,it is volumetric compression due to Li addition that increases modulus,tightening the Al-Al potential curves.In the end,it is the Al-Al and Al-Li valence bonds in Al 3 Li at large size and high-volume fraction which increase its second derivative of internal energy and thus Young’s modulus.
基金the financial support of the China Postdoctoral Science Foundation(No.2021M690384)the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Here,we compare the porosity,microstructure and mechanical property of 4047 Al–Si alloys prepared by wire-arc additive manufacturing(WAAM)and conventional casting.X-ray microscopy reveals that WAAM causes a higher volume fraction of gas pores in comparison with conventional casting.Effective refi nements ofα-Al dendrites,eutectic Si particles and Ferich intermetallic compounds are achieved by WAAM,resulting from its rapid solidifi cation process.Both ultimate tensile strength(UTS,up to 205.6 MPa)and yield stress(YS,up to 98.0 MPa)are improved by WAAM at the expense of elongation after fracture.The mechanical property anisotropy between scanning direction and build direction is minimal for alloys via WAAM.Additional microstructure refi nement and strength enhancement are enabled by increasing the travel speed of welding torch from 300 to 420 mm/min.