Periodic whole cross-section computation models are established for segmental baffle heat exchanger, shutter baffle heat exchanger, and trapezoid-like tilted baffle heat exchanger. The reliability of models is verifie...Periodic whole cross-section computation models are established for segmental baffle heat exchanger, shutter baffle heat exchanger, and trapezoid-like tilted baffle heat exchanger. The reliability of models is verified by comparing the simulated results to the results obtained from the Bell-Delaware method. Due to the orthogonal assembly of the baffles, the shell side fluid shows the twisty flow of trapezoid-like tilted baffle heat exchanger. The essential mechanism on disturbing flow and heat transfer enhancement is revealed by defining the non-dimensional factor η of the shell side fluid flow direction of heat exchanger and the field synergy principle. The results show that at the same Reynolds number, the shell side fluid convection heat transfer coefficient of trapezoid-like tilted baffle heat exchanger is 12.43%-24.33% and 6.71%-11.51% higher than those of segmental baffle heat exchanger and shutter baffle heat exchanger, respectively. The shell side fluid flow velocity field and the pressure gradient field of trapezoid-like tilted baffle heat exchanger and shutter baffle heat exchanger decreases compared with that of segmental baffle heat exchanger, so the shell side fluid flow resistance and pressure drop is increased; the shell side comprehensive performance of trapezoid-like tilted baffle heat exchanger is 5.85%-9.06% higher than that of segmental baffle heat exchanger, and 15.27%-23.28% higher than that of shutter baffle heat exchanger. In this study, a baffle structure with higher efficiency of the energy utilization for the heat exchanger is provided.展开更多
In-situ coupling of adsorptive desulfurization and biodesulfurization is a new desulfurization technol- ogy for fossil oil. It has the merits of high-selectivity of biodesulfurization and high-rate of adsorptive desul...In-situ coupling of adsorptive desulfurization and biodesulfurization is a new desulfurization technol- ogy for fossil oil. It has the merits of high-selectivity of biodesulfurization and high-rate of adsorptive desulfurization. It is carried out by assembling nano-adsorbents onto surfaces of microbial cells. In this work, In-situ coupling desulfurization technology of widely used desulfurization adsorbents of γ-Al2O3, Na-Y molecular sieves, and active carbon with Pseudomonas delafieldii R-8 were studied. Results show that Na-Y molecular sieves restrain the activity of R-8 cells and active carbon cannot desorb the sub- strate dibenzothiophene (DBT). Thus, they are not applicable to in-situ coupling desulfurization tech- nology. Gamma-Al2O3 can adsorb DBT from oil phase quickly, and then desorb it and transfer it to R-8 cells for biodegradation, thus increasing desulfurization rate. It is also found that nano-sized γ-Al2O3 increases desulfurization rate more than regular-sized γ-Al2O3. Therefore, nano- γ-Al2O3 is regarded as the better adsorbent for this in-situ coupling desulfurization technology.展开更多
To overcome the defect of the significant increase in pressure drop when the heat transfer performance of helical baffle heat exchanger is improved,a novel helical baffle heat exchanger with twisted oval tube is propo...To overcome the defect of the significant increase in pressure drop when the heat transfer performance of helical baffle heat exchanger is improved,a novel helical baffle heat exchanger with twisted oval tube is proposed.Numerical simulation was done to exhibit the shell side heat transfer and flow characteristics with CFD software Fluent.The field synergy principle was used to evaluate the shell side performance.The results show that the flow velocity distribution on the shell side of the spiral baffle heat exchanger is more uniform and the velocity near the tube wall increases in the range of research parameters,as the circular tube is replaced by a twisted elliptical tube with the same perimeter length.Moreover,the helical baffle heat exchanger with twisted oval tube has better field synergy of velocity and temperature gradient,velocity and pressure gradient.The helical baffle heat exchanger with helix angle of 15°has better performance than that of circular tube,and its heat transfer coefficient is improved about 3.3%and pressure drop is reduced by 17.1%–19.1%.Hence,the comprehensive heat transfer performance is improved by 21.5%–22.5%.When the helix angle is 20°,the comprehensive heat transfer performance is increased by 16.1%–18.0%with heat transfer coefficient improvement of 3.6%and pressure drop reduction of 13.9%–16.5%.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No. 21776263, No. 51006092, No. 51776190, No. 51476147)the Henan Province Science and Technology Breakthrough Plan of China (Grant No. 182102310022)the Applied Research Plan of Key Scientific Research Projects of Henan Province Higher Education of China (Grant No. 18A470001, No. 17A530006)
文摘Periodic whole cross-section computation models are established for segmental baffle heat exchanger, shutter baffle heat exchanger, and trapezoid-like tilted baffle heat exchanger. The reliability of models is verified by comparing the simulated results to the results obtained from the Bell-Delaware method. Due to the orthogonal assembly of the baffles, the shell side fluid shows the twisty flow of trapezoid-like tilted baffle heat exchanger. The essential mechanism on disturbing flow and heat transfer enhancement is revealed by defining the non-dimensional factor η of the shell side fluid flow direction of heat exchanger and the field synergy principle. The results show that at the same Reynolds number, the shell side fluid convection heat transfer coefficient of trapezoid-like tilted baffle heat exchanger is 12.43%-24.33% and 6.71%-11.51% higher than those of segmental baffle heat exchanger and shutter baffle heat exchanger, respectively. The shell side fluid flow velocity field and the pressure gradient field of trapezoid-like tilted baffle heat exchanger and shutter baffle heat exchanger decreases compared with that of segmental baffle heat exchanger, so the shell side fluid flow resistance and pressure drop is increased; the shell side comprehensive performance of trapezoid-like tilted baffle heat exchanger is 5.85%-9.06% higher than that of segmental baffle heat exchanger, and 15.27%-23.28% higher than that of shutter baffle heat exchanger. In this study, a baffle structure with higher efficiency of the energy utilization for the heat exchanger is provided.
基金Supported by National Basic Research Program of China (Grant No: 2006CB202507)National High-tech R&D Program (Grant No: 2006AA02Z209)
文摘In-situ coupling of adsorptive desulfurization and biodesulfurization is a new desulfurization technol- ogy for fossil oil. It has the merits of high-selectivity of biodesulfurization and high-rate of adsorptive desulfurization. It is carried out by assembling nano-adsorbents onto surfaces of microbial cells. In this work, In-situ coupling desulfurization technology of widely used desulfurization adsorbents of γ-Al2O3, Na-Y molecular sieves, and active carbon with Pseudomonas delafieldii R-8 were studied. Results show that Na-Y molecular sieves restrain the activity of R-8 cells and active carbon cannot desorb the sub- strate dibenzothiophene (DBT). Thus, they are not applicable to in-situ coupling desulfurization tech- nology. Gamma-Al2O3 can adsorb DBT from oil phase quickly, and then desorb it and transfer it to R-8 cells for biodegradation, thus increasing desulfurization rate. It is also found that nano-sized γ-Al2O3 increases desulfurization rate more than regular-sized γ-Al2O3. Therefore, nano- γ-Al2O3 is regarded as the better adsorbent for this in-situ coupling desulfurization technology.
基金supported by National Natural Science Foundation of China(Grants No.21776263,51706208)。
文摘To overcome the defect of the significant increase in pressure drop when the heat transfer performance of helical baffle heat exchanger is improved,a novel helical baffle heat exchanger with twisted oval tube is proposed.Numerical simulation was done to exhibit the shell side heat transfer and flow characteristics with CFD software Fluent.The field synergy principle was used to evaluate the shell side performance.The results show that the flow velocity distribution on the shell side of the spiral baffle heat exchanger is more uniform and the velocity near the tube wall increases in the range of research parameters,as the circular tube is replaced by a twisted elliptical tube with the same perimeter length.Moreover,the helical baffle heat exchanger with twisted oval tube has better field synergy of velocity and temperature gradient,velocity and pressure gradient.The helical baffle heat exchanger with helix angle of 15°has better performance than that of circular tube,and its heat transfer coefficient is improved about 3.3%and pressure drop is reduced by 17.1%–19.1%.Hence,the comprehensive heat transfer performance is improved by 21.5%–22.5%.When the helix angle is 20°,the comprehensive heat transfer performance is increased by 16.1%–18.0%with heat transfer coefficient improvement of 3.6%and pressure drop reduction of 13.9%–16.5%.