期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
17-DMAG对PD-1人源化小鼠肝癌移植瘤的抑制作用
1
作者 李晓娟 修叶 +2 位作者 李兴杰 孙岩峰 李瑞生 《中国比较医学杂志》 CAS 北大核心 2024年第6期82-86,160,共6页
目的 探讨17-二甲基胺乙基-17-去甲氧基格尔德霉素(17-DMAG)对PD-1人源化小鼠人肝癌移植肿瘤生长的抑制作用。方法 选取30只PD-1人源化小鼠,将HepG2细胞悬液注射于小鼠右侧腹股沟皮下组织,构建人肝癌移植瘤模型;将荷瘤人源化小鼠随机分... 目的 探讨17-二甲基胺乙基-17-去甲氧基格尔德霉素(17-DMAG)对PD-1人源化小鼠人肝癌移植肿瘤生长的抑制作用。方法 选取30只PD-1人源化小鼠,将HepG2细胞悬液注射于小鼠右侧腹股沟皮下组织,构建人肝癌移植瘤模型;将荷瘤人源化小鼠随机分为3组(每组10只):(1)模型组(注射生理盐水10 mg/kg);(2)17-DMAG组(按25 mg/kg腹腔注射17-DMAG,3次/周);(3)顺铂组(腹腔注射20 mg/kg, 2次/周),实验持续4周。注射结束后测量人源化小鼠移植瘤的长、短径计算体积,测量肿瘤质量计算抑瘤率,同时采用免疫组化方法检测肿瘤组织中CD31(以阳性细胞数计算肿瘤微血管密度(MVD))及血管内皮生长因子(VEGF)的表达。结果 17-DMAG组和顺铂组的肿瘤体积和质量均较模型组显著减小(P<0.05),17-DMAG组的抑瘤率略高于顺铂组,但17-DMAG组和顺铂组肿瘤质量和体积以及抑瘤率均不存在显著性差异。17-DMAG组和顺铂组MVD标记微血管数量及VEGF表达均低于模型组(P<0.05),且17-DMAG组又低于顺铂组(P<0.05)。结论 17-DMAG可显著降低肝癌移植瘤中VEGF的表达,抑制新生血管在肿瘤中发生发展,从而对人源化小鼠肝癌移植瘤发挥抑制作用。 展开更多
关键词 PD-1人源化小鼠 17-DMAG 肝癌 微血管密度 血管内皮细胞生长因子
下载PDF
PD-1人源化小鼠构建繁殖与基因型鉴定 被引量:1
2
作者 李晓娟 孙岩峰 +2 位作者 修叶 李兴杰 李瑞生 《实验动物科学》 2023年第4期34-38,共5页
目的探讨PD-1人源化小鼠的繁育与基因型鉴定,为进一步研究相关小分子抑制剂的体内药效评价提供动物模型。方法通过构建PD-1人源化小鼠,获得F1代鼠4只,雌雄交配进行培育繁殖。对每窝仔鼠的数量,存活率等进行记录观察,随后对仔鼠剪尾提取... 目的探讨PD-1人源化小鼠的繁育与基因型鉴定,为进一步研究相关小分子抑制剂的体内药效评价提供动物模型。方法通过构建PD-1人源化小鼠,获得F1代鼠4只,雌雄交配进行培育繁殖。对每窝仔鼠的数量,存活率等进行记录观察,随后对仔鼠剪尾提取基因组DNA,用PCR法扩增目的基因,然后进行核酸电泳,鉴定基因型。选用F2代纯合型与纯合型雌雄交配,野生型与野生型雌雄交配。结果鉴定的F2代小鼠有野生型、纯合型和杂合型3种基因型。纯合型与纯合型交配获得F3代仔鼠基因型全部为纯合型。野生型与野生型交配获得F3代仔鼠基因型全部为野生型。结论成功筛选出PD-1人源化小鼠纯合子基因型,并有效地进行扩群保种,为今后应用该小鼠模型提供实验保障。 展开更多
关键词 PD-1 人源化小鼠 基因型
下载PDF
Four-Order Superconvergent Weak Galerkin Methods for the Biharmonic Equation on Triangular Meshes
3
作者 xiu ye Shangyou Zhang 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1323-1338,共16页
A stabilizer-free weak Galerkin(SFWG)finite element method was introduced and analyzed in Ye and Zhang(SIAM J.Numer.Anal.58:2572–2588,2020)for the biharmonic equation,which has an ultra simple finite element formulat... A stabilizer-free weak Galerkin(SFWG)finite element method was introduced and analyzed in Ye and Zhang(SIAM J.Numer.Anal.58:2572–2588,2020)for the biharmonic equation,which has an ultra simple finite element formulation.This work is a continuation of our investigation of the SFWG method for the biharmonic equation.The new SFWG method is highly accurate with a convergence rate of four orders higher than the optimal order of convergence in both the energy norm and the L^(2)norm on triangular grids.This new method also keeps the formulation that is symmetric,positive definite,and stabilizer-free.Four-order superconvergence error estimates are proved for the corresponding SFWG finite element solutions in a discrete H^(2)norm.Superconvergence of four orders in the L^(2)norm is also derived for k≥3,where k is the degree of the approximation polynomial.The postprocessing is proved to lift a P_(k)SFWG solution to a P_(k+4)solution elementwise which converges at the optimal order.Numerical examples are tested to verify the theor ies. 展开更多
关键词 Finite element Weak Hessian Weak Galerkin(WG) Biharmonic equation Triangular mesh
下载PDF
A Mixed Finite-Element Method on Polytopal Mesh
4
作者 Yanping Lin xiu ye Shangyou Zhang 《Communications on Applied Mathematics and Computation》 2022年第4期1374-1385,共12页
In this paper,we introduce new stable mixed finite elements of any order on polytopal mesh for solving second-order elliptic problem.We establish optimal order error estimates for velocity and super convergence for pr... In this paper,we introduce new stable mixed finite elements of any order on polytopal mesh for solving second-order elliptic problem.We establish optimal order error estimates for velocity and super convergence for pressure.Numerical experiments are conducted for our mixed elements of different orders on 2D and 3D spaces that confirm the theory. 展开更多
关键词 Mixed finite-element methods Second-order elliptic problem Polytopal mesh
下载PDF
A Modified Weak Galerkin Finite Element Method for the Biharmonic Equation on Polytopal Meshes
5
作者 Ming Cui xiu ye Shangyou Zhang 《Communications on Applied Mathematics and Computation》 2021年第1期91-105,共15页
A modified weak Galerkin(MWG)finite element method is developed for solving the biharmonic equation.This method uses the same finite element space as that of the discontinuous Galerkin method,the space of discontinuou... A modified weak Galerkin(MWG)finite element method is developed for solving the biharmonic equation.This method uses the same finite element space as that of the discontinuous Galerkin method,the space of discontinuous polynomials on polytopal meshes.But its formulation is simple,symmetric,positive definite,and parameter independent,without any of six inter-element face-integral terms in the formulation of the discontinuous Galerkin method.Optimal order error estimates in a discrete H2 norm are established for the corresponding finite element solutions.Error estimates in the L^(2)norm are also derived with a sub-optimal order of convergence for the lowest-order element and an optimal order of convergence for all high-order of elements.The numerical results are presented to confirm the theory of convergence. 展开更多
关键词 Finite element methods Weak Laplacian Biharmonic equations Polytopal meshes
下载PDF
基于NLRP3炎症小体探讨白芍总苷胶囊改善急性肺损伤的作用机制 被引量:1
6
作者 许颖杰 王贤玲 +8 位作者 牟文清 文金财 王炎 修叶 董旭 李俊杰 湛小燕 肖小河 柏兆方 《中国中药杂志》 CAS CSCD 北大核心 2024年第10期2754-2765,共12页
基于NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎症小体信号通路探讨白芍总苷胶囊(total glucosides of White Paeony Capsules,TGP)对急性肺损伤(acute lung injury,ALI... 基于NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎症小体信号通路探讨白芍总苷胶囊(total glucosides of White Paeony Capsules,TGP)对急性肺损伤(acute lung injury,ALI)模型小鼠的改善作用及分子机制。在小鼠原代骨髓巨噬细胞(bone marrow-derived macrophages,BMDMs)上建立NLRP3炎症小体活化模型,通过蛋白免疫印迹(Western blot,WB)、免疫荧光染色、酶联免疫吸附实验(enzyme-linked immunosorbent assay,ELISA)和流式细胞术探究其分子机制。将C57BL/6J小鼠随机分为空白组、TGP组、模型组(LPS组)、LPS+TGP低剂量组、LPS+TGP高剂量组、LPS+MCC950组、LPS+MCC950+TGP组,每组8只,建立小鼠ALI模型。最后,收集肺泡灌洗液(bronchoalveolar lavage fluid,BALF)以及肺组织。测定各组小鼠肺指数及肺重湿干比,通过苏木精-伊红(HE)染色技术分析肺部组织的病理学变化,使用流式细胞术检测各组BALF中中性粒细胞数量,采用ELISA法测定BALF中白细胞介素(interleukin,IL)-1β、IL-6、肿瘤坏死因子(tumor necrosis factor,TNF)-α含量,实时荧光定量PCR(quantitative real-time,RT-qPCR)法测定肺组织中IL-1β、IL-18、IL-6、TNF-α的基因表达。结果表明TGP通过抑制上游线粒体活性氧(mitochondrial reactive oxygen species,mtROS)的产生以及随后的凋亡相关斑点(apoptosis-associated speck,ASC)的寡聚化,显著阻断了NLRP3炎症小体的激活。此外,在小鼠ALI模型中,与空白组相比,模型组肺组织出现肺泡结构破裂,肺泡间隔增厚,肺指数及肺重湿干比明显增高,中性粒细胞数量显著增加,炎性因子水平明显升高;与模型组相比,TGP和MCC950各组的肺组织病理形态明显改善,肺指数和肺重湿干比明显减低,中性粒细胞数量显著减少,炎性因子水平显著下调;值得注意的是,与MCC950组相比,MCC950+TGP组效果无明显差异。综上,该研究揭示了白芍总苷胶囊可能是通过抑制NLRP3炎症小体的激活从而改善小鼠ALI,也提供了一种安全有效的防治ALI/ARDS的候选药物。 展开更多
关键词 白芍总苷胶囊 NLRP3炎症小体 线粒体活性氧 ASC寡聚化 脂多糖诱导的急性肺损伤
原文传递
Total glucosides of paeony alleviates cGAS-STING-mediated diseases by blocking the STING-IRF3 interaction
7
作者 xiu ye WANG Sihao +13 位作者 ZHANG Ping LI Chengwei WU Zhixin WEN Jincai XU Yingjie LV Guiji ZHAO Xiaomei DONG Xu CHEN Yichong LI Junjie WANG Yan ZOU Liang XIAO Xiaohe BAI Zhaofang 《Chinese Journal of Natural Medicines》 SCIE CAS CSCD 2024年第5期402-415,共14页
In the realm of autoimmune and inflammatory diseases,the cyclic GMP-AMP synthase(cGAS)stimulator of interferon genes(STING)signaling pathway has been thoroughly investigated and established.Despite this,the clinical a... In the realm of autoimmune and inflammatory diseases,the cyclic GMP-AMP synthase(cGAS)stimulator of interferon genes(STING)signaling pathway has been thoroughly investigated and established.Despite this,the clinical approval of drugs targeting the cGAS-STING pathway has been limited.The Total glucosides of paeony(TGP)is highly anti-inflammatory and is commonly used in the treatment of rheumatoid arthritis(RA),emerged as a subject of our study.We found that the TGP markedly reduced the activation of the cGAS-STING signaling pathway,triggered by various cGAS-STING agonists,in mouse bone marrow-derived macrophages(BMDMs)and Tohoku Hospital Pediatrics-1(THP-1)cells.This inhibition was noted alongside the suppression of interferon regulatory factor 3(IRF3)phosphorylation and the expression of interferon-beta(IFN-β),C-X-C motif chemokine ligand 10(CXCL10),and inflammatory mediators such as tumor necrosis factor-alpha(TNF-α)and interleukin-6(IL-6).The mechanism of action appeared to involve the TGP’s attenuation of the STING-IRF3 interaction,without affecting STING oligomerization,thereby inhibiting the activation of downstream signaling pathways.In vivo,the TGP hindered the initiation of the cGAS-STING pathway by the STING agonist dimethylxanthenone-4-acetic acid(DMXAA)and exhibited promising therapeutic effects in a model of acute liver injury induced by lipopolysaccharide(LPS)and D-galactosamine(D-GalN).Our findings underscore the potential of the TGP as an effective inhibitor of the cGAS-STING pathway,offering a new treatment avenue for inflammatory and autoimmune diseases mediated by this pathway. 展开更多
关键词 Total glucosides of gaeony cGAS-STING pathway Inflammation LPS/D-GalN STING inhibitor
原文传递
On the superconvergence of a WG method for the elliptic problem with variable coefficients
8
作者 Junping Wang Xiaoshen Wang +2 位作者 xiu ye Shangyou Zhang Peng Zhu 《Science China Mathematics》 SCIE CSCD 2024年第8期1899-1910,共12页
This article extends a recently developed superconvergence result for weak Galerkin(WG)approximations for modeling partial differential equations from constant coefficients to variable coefficients.This superconvergen... This article extends a recently developed superconvergence result for weak Galerkin(WG)approximations for modeling partial differential equations from constant coefficients to variable coefficients.This superconvergence features a rate that is two orders higher than the optimal-order error estimates in the usual energy and L^(2)norms.The extension from constant to variable coefficients for the modeling equations is highly non-trivial.The underlying technical analysis is based on a sequence of projections and decompositions.Numerical results confirm the superconvergence theory for second-order elliptic problems with variable coefficients. 展开更多
关键词 weak Galerkin finite element methods SUPERCONVERGENCE second-order elliptic problems stabilizerfree
原文传递
Constructing Order Two Superconvergent WG Finite Elements on Rectangular Meshes
9
作者 xiu ye Shangyou Zhang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2023年第1期230-241,共12页
In this paper,we introduce a stabilizer free weak Galerkin(SFWG)finite element method for second order elliptic problems on rectangular meshes.With a special weak Gradient space,an order two superconvergence for the S... In this paper,we introduce a stabilizer free weak Galerkin(SFWG)finite element method for second order elliptic problems on rectangular meshes.With a special weak Gradient space,an order two superconvergence for the SFWG finite element solution is obtained,in both L 2 and H1 norms.A local post-process lifts such a Pk weak Galerkin solution to an optimal order Pk+2 solution.The numerical results confirm the theory. 展开更多
关键词 Finite element weak Galerkin method stabilizer free rectangular mesh
原文传递
FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div)ELEMENTS 被引量:3
10
作者 Junping Wang Xiaoshen Wang xiu ye 《Journal of Computational Mathematics》 SCIE CSCD 2008年第3期410-436,共27页
We derived and analyzed a new numerical scheme for the Navier-Stokes equations by using H(div) conforming finite elements. A great deal of effort was given to an establishment of some Sobolev-type inequalities for p... We derived and analyzed a new numerical scheme for the Navier-Stokes equations by using H(div) conforming finite elements. A great deal of effort was given to an establishment of some Sobolev-type inequalities for piecewise smooth functions. In particular, the newly derived Sobolev inequalities were employed to provide a mathematical theory for the H(div) finite element scheme. For example, it was proved that the new finite element scheme has solutions which admit a certain boundedness in terms of the input data. A solution uniqueness was also possible when the input data satisfies a certain smallness condition. Optimal-order error estimates for the corresponding finite element solutions were established in various Sobolev norms. The finite element solutions from the new scheme feature a full satisfaction of the continuity equation which is highly demanded in scientific computing. 展开更多
关键词 Finite element methods Navier-Stokes equations CFD
原文传递
A Numerical Study on the Weak Galerkin Method for the Helmholtz Equation 被引量:2
11
作者 Lin Mu Junping Wang +1 位作者 xiu ye Shan Zhao 《Communications in Computational Physics》 SCIE 2014年第5期1461-1479,共19页
A weak Galerkin(WG)method is introduced and numerically tested for the Helmholtz equation.This method is flexible by using discontinuous piecewise polynomials and retains the mass conservation property.At the same tim... A weak Galerkin(WG)method is introduced and numerically tested for the Helmholtz equation.This method is flexible by using discontinuous piecewise polynomials and retains the mass conservation property.At the same time,the WG finite element formulation is symmetric and parameter free.Several test scenarios are designed for a numerical investigation on the accuracy,convergence,and robustness of the WG method in both inhomogeneous and homogeneous media over convex and non-convex domains.Challenging problems with high wave numbers are also examined.Our numerical experiments indicate that the weak Galerkin is a finite element technique that is easy to implement,and provides very accurate and robust numerical solutions for the Helmholtz problem with high wave numbers. 展开更多
关键词 Galerkin finite element methods discrete gradient Helmholtz equation large wave numbers weak Galerkin.
原文传递
A Discontinuous Galerkin Finite Element Method without Interior Penalty Terms
12
作者 Fuzheng Gao xiu ye Shangyou Zhang 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第2期299-314,共16页
A conforming discontinuous Galerkinfinite element method was introduced by Ye and Zhang,on simplicial meshes and on polytopal meshes,which has theflexibility of using discontinuous approximation and an ultra simple form... A conforming discontinuous Galerkinfinite element method was introduced by Ye and Zhang,on simplicial meshes and on polytopal meshes,which has theflexibility of using discontinuous approximation and an ultra simple formulation.The main goal of this paper is to improve the above discontinuous Galerkinfinite element method so that it can handle nonhomogeneous Dirichlet boundary conditions effectively.In addition,the method has been generalized in terms of approximation of the weak gradient.Error estimates of optimal order are established for the correspond-ing discontinuousfinite element approximation in both a discrete H1 norm and the L2 norm.Numerical results are presented to confirm the theory. 展开更多
关键词 Nonhomogeneous Dirichlet boundary conditions weak gradient discontinuous Galerkin STABILIZER penalty free finite element methods polytopal mesh
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部