Verticillium dahliae is an important fungal pathogen affecting cotton yield and quality.Therefore,the mining of V.dahlia-resistance genes is urgently needed.Proteases and protease inhibitors play crucial roles in plan...Verticillium dahliae is an important fungal pathogen affecting cotton yield and quality.Therefore,the mining of V.dahlia-resistance genes is urgently needed.Proteases and protease inhibitors play crucial roles in plant defense responses.However,the functions and regulatory mechanisms of the protease inhibitor PR6 gene family remain largely unknown.This study provides a comprehensive analysis of the PR6 gene family in the cotton genome.We performed genome-wide identification and functional characterization of the cotton GhPR6 gene family,which belongs to the potato protease inhibitor I family of inhibitors.Thirty-nine PR6s were identified in Gossypium arboreum,G.raimondii,G.barbadense,and G.hirsutum,and they were clustered into four groups.Based on the analysis of pathogen-induced and Ghlmm transcriptome data,Gh PR6-5b was identified as the key gene for V.dahliae resistance.Virus-induced gene silencing experiments revealed that cotton was more sensitive to V.dahliae V991after PR6-5b silencing.The present study established that GhWRKY75 plays an important role in resistance to Verticillium wilt in cotton by positively regulating GhPR6-5b expression by directly binding to the W-box TTGAC(T/C).Our findings established that GhWRKY75 is a potential candidate for improving cotton resistance to V.dahliae,and provide primary information for further investigations and the development of specific strategies to bolster the defense mechanisms of cotton against V.dahliae.展开更多
1.Introduction Solar water splitting offers a promising approach for green hydrogen production[1].There are many ways to achieve solar water splitting,such as photocatalytic(PC)water splitting,photoelectrochemical(PEC...1.Introduction Solar water splitting offers a promising approach for green hydrogen production[1].There are many ways to achieve solar water splitting,such as photocatalytic(PC)water splitting,photoelectrochemical(PEC)water splitting,and photovoltaicelectrocatalytic(PV-EC)water splitting[2].展开更多
Self-excited oscillating jets(SOJ)are used in several practical applications.Their performances are significantly affected by structural parameters and the target distance.In this study,a geometric model of the SOJ no...Self-excited oscillating jets(SOJ)are used in several practical applications.Their performances are significantly affected by structural parameters and the target distance.In this study,a geometric model of the SOJ nozzle accounting for multiple structural parameters is introduced,then the related cavitation performances and the optimal target distance are investigated using a Large-Eddy Simulation(LES)approach.Results are also provided about an experiment,which was conducted to validate the simulation results.By analyzing the evolution of the vapor volume fraction at the nozzle outlet,a discussion is presented about the effect of the aforementioned structural parameters on the cavitation performances and the target distance.It is shown that the distribution of cavitation clouds at the outlet of the SOJ nozzle displays a non-monotonic trend(first increasing,then decreasing).Under working conditions with an inlet pressure of 4 MPa,a SOJ nozzle outlet/inlet diameter ratio(D_(1)/D_(2))of 1.2,and a chamber diameter ratio(D/L)close to 1.8,the nozzle outlet cavitation performance attains a maximum.The optimal structural parameters correspond to the optimal target distance,which is near 50 mm.The experiments have revealed that the SOJ nozzle with the above parameters displays a good cavitation erosion effect at the target distance of 50 mm,in satisfactory agreement with the numerical simulation results.展开更多
The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbin...The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip.The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences.This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation,which need to be analyzed and understood.This study constructed transient flow and rotational speed mathematical models under various degrees of rotor seizure using the test data collected from a dedicated transient rotor seizure test system.Then,bidirectional fluid-solid coupling simulations were conducted to investigate the flow evolution mechanism.It is found that the influence of the impeller structure size and transient braking acceleration on the unsteady head(Hu)is dominant in rotor seizure accident events.Moreover,the present results also show that the rotational acceleration additional head(Hu1)is much higher than the instantaneous head(Hu2).展开更多
In this paper, a model averaging method is proposed for varying-coefficient models with response missing at random by establishing a weight selection criterion based on cross-validation. Under certain regularity condi...In this paper, a model averaging method is proposed for varying-coefficient models with response missing at random by establishing a weight selection criterion based on cross-validation. Under certain regularity conditions, it is proved that the proposed method is asymptotically optimal in the sense of achieving the minimum squared error.展开更多
The practical applications of zinc metal batteries are plagued by the dendritic propagation of its metal anodes due to the limited transfer rate of charge and mass at the electrode/electrolyte interphase.To enhance th...The practical applications of zinc metal batteries are plagued by the dendritic propagation of its metal anodes due to the limited transfer rate of charge and mass at the electrode/electrolyte interphase.To enhance the reversibility of Zn metal,a quasi-solid interphase composed by defective metal-organic framework(MOF)nanoparticles(D-UiO-66)and two kinds of zinc salts electrolytes is fabricated on the Zn surface served as a zinc ions reservoir.Particularly,anions in the aqueous electrolytes could be spontaneously anchored onto the Lewis acidic sites in defective MOF channels.With the synergistic effect between the MOF channels and the anchored anions,Zn^(2+)transport is prompted significantly.Simultaneously,such quasi-solid interphase boost charge and mass transfer of Zn^(2+),leading to a high zinc transference number,good ionic conductivity,and high Zn^(2+)concentration near the anode,which mitigates Zn dendrite growth obviously.Encouragingly,unprecedented average coulombic efficiency of 99.8%is achieved in the Zn||Cu cell with the proposed quasi-solid interphase.The cycling performance of D-UiO-66@Zn||MnO_(2)(~92.9%capacity retention after 2000 cycles)and D-UiO-66@Zn||NH_(4)V_(4)O_(10)(~84.0%capacity retention after 800 cycles)prove the feasibility of the quasi-solid interphase.展开更多
The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned ab...The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned above.Harsh environments will lead to solder joints degradation or even failure,resulting in damage to onboard electronics.The research activities on high reliability solder joints using in extreme environments can not only reduce the use of onboard protection devices,but effectively improve the overall reliability of spacecraft,which is of great significance to the aviation industry.In this paper,we review the reliability research on SnPb solder alloys,Sn-based lead-free solder alloys and In-based solder alloys in extreme environments,and try to provide some suggestions for the follow-up studies,which focus on solder joint reliability under extreme environments.展开更多
In this paper, three smoothed empirical log-likelihood ratio functions for the parameters of nonlinear models with missing response are suggested. Under some regular conditions, the corresponding Wilks phenomena are o...In this paper, three smoothed empirical log-likelihood ratio functions for the parameters of nonlinear models with missing response are suggested. Under some regular conditions, the corresponding Wilks phenomena are obtained and the confidence regions for the parameter can be constructed easily.展开更多
A simple and rapid method to prepare efficient electro-competent cells of Xanthomonas campestris pv. campestris was generated, with up to 100-fold transformation efficiencies over the existing procedures. The overnigh...A simple and rapid method to prepare efficient electro-competent cells of Xanthomonas campestris pv. campestris was generated, with up to 100-fold transformation efficiencies over the existing procedures. The overnight cultures were treated with sucrose solution and micro-centrifuged at room temperature;the entire electro-competent cells generation process can be completed in 15 minutes. It overcomes the complication and time-consuming shortcomings of the traditional conjugation or electro-transformation methods in this strain. Both the replicative plasmids and non-replicative plasmids could be transformed or integrated efficiently using this method. And the DNA concentration, cells growth stage, field strength and recovery time all had influences on the transformation efficiency. In the optimal conditions, the transformation efficiency for the replicative plasmids was 10<sup>9</sup> transformants per microgram DNA, and for non-replicative plasmids was 150 transformants per microgram DNA. Further with the homology sequences, two chromosomal target genes were deleted efficiently and the knockout strains were obtained easily.展开更多
Inspired by high theoretical energy density(-2600 W h kg^(-1))and cost-effectiveness of sulfur cathode,lithium–sulfur batteries are receiving great attention and considered as one of the most promising next-generatio...Inspired by high theoretical energy density(-2600 W h kg^(-1))and cost-effectiveness of sulfur cathode,lithium–sulfur batteries are receiving great attention and considered as one of the most promising next-generation high-energy-density batteries.However,over the past decades,the energy density and reliable safety levels as well as the commercial progress of lithium-sulfur batteries are still far from satisfactory due to the disconnection and huge gap between fundamental research and practical application.展开更多
For efficient electrolysis of water for hydrogen generation or other valueadded chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-e ciency metal sulfide electrocatalysts on a l...For efficient electrolysis of water for hydrogen generation or other valueadded chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-e ciency metal sulfide electrocatalysts on a large scale. Herein, we construct a new core–branch array and binder-free electrode by growing Ni_3S_2 nanoflake branches on an atomic-layer-deposited(ALD) TiO_2 skeleton. Through induced growth on the ALD-TiO_2 backbone, cross-linked Ni_3S_2 nanoflake branches with exposed { 210} highindex facets are uniformly anchored to the preformed TiO_2 core forming an integrated electrocatalyst. Such a core–branch array structure possesses large active surface area, uniform porous structure, and rich active sites of the exposed { 210 } high-index facet in the Ni_3S_2 nanoflake. Accordingly, the TiO_2@Ni_3S_2 core/branch arrays exhibit remarkable electrocatalytic activities in an alkaline medium, with lower overpotentials for both oxygen evolution reaction(220 mV at 10 mA cm^(-2)) and hydrogen evolution reaction(112 m V at 10 mA cm^(-2)), which are better than those of other Ni_3S_2 counterparts. Stable overall water splitting based on this bifunctional electrolyzer is also demonstrated.展开更多
Metal sulphide electrocatalyst is considered as one of the most promising low-cost candidates for oxygen evolution reaction(OER).In this work,we report a novel free-standing Cu2S branch array via a facile TiO2-induced...Metal sulphide electrocatalyst is considered as one of the most promising low-cost candidates for oxygen evolution reaction(OER).In this work,we report a novel free-standing Cu2S branch array via a facile TiO2-induced electrodeposition-sulfurization method.Interestingly,cross-linked Cu2S nanoflake branch is strongly anchored on the TiO2 backbone forming high-quality Cu2S/TiO2/Cu2S core-branch arrays.The branch formation mechanism is also proposed.As compared to the pure Cu2S nanowire arrays,the asprepared Cu2S/TiO2/Cu2S core-branch arrays show much better alkaline OER performance with lower overpotential(284 mV at 10 mA cm^-2)and smaller Tafel slope(72 dec-1)as well as enhanced longterm durability mainly due to larger exposed area and more active electrocatalytic sites.Our work provides a new way for construction of advanced metal sulphide electrocatalysts for electrochemical energy conversion.展开更多
Rational design of cost-effective high-performance electrocatalysts for oxygen evolution reaction (OER) is of great significance for electrochemical water splitting. Herein, we adopt a nitrogen doping method to fabric...Rational design of cost-effective high-performance electrocatalysts for oxygen evolution reaction (OER) is of great significance for electrochemical water splitting. Herein, we adopt a nitrogen doping method to fabricate self-supported N-doped CoO nanowire arrays (N-CoO) as active electrocatalysts via a facile hydrothermal combined doping method. The N-CoO nanowires are strongly composited with the carbon cloth substrate forming free-standing electrode with reinforced stability and high electronic conductivity. Owing to the increased accessible and electroactive areas, rich/short pathways for charge transfer and enhanced electronic conductivity, the N-CoO electrode exhibits excellent electrocatalytic performance for OER with a low overpotential (319 mV at 10 mA cm^-2 and 410 mV at 100 mA cm^-2) and a low Tafel slope of 74 mV dec^-1 as well as superior long-term stability with no decay in 24 h continuous test in alkaline solution. Our reported design and optimization strategy provide a promising way to construct interesting well-aligned arrays for application in energy storage and conversion.展开更多
With ideal combination of benefits that selectively converts high photon energy spectrum into electricity while transmitting low energy photo ns for photos yn thesis,the CH3NH3PbBr3 perovskite solar cell(BPSC)is a pro...With ideal combination of benefits that selectively converts high photon energy spectrum into electricity while transmitting low energy photo ns for photos yn thesis,the CH3NH3PbBr3 perovskite solar cell(BPSC)is a promising candidate for efficient greenhouse based building integrated photovoltaic(BIPV)applications.However,the efficiency of BPSCs is still much lower than their theoretical efficiency.In general,interface band alignment is regarded as the vital factor of the BPSCs whereas only few reports on enhancing perovskite film quality.In this work,highly efficient BPSCs were fabricated by improving the crystallization process of CH3NH3PbBr3 with the assistance of anti-solvents.A new anti-solvent of diphenyl ether(DPE)was developed for its strong interaction with the solvents in the perovskite precursor solution.By using the anti-solvent of DPE,trap-state density of the CH3NH3PbBr3 film is reduced and the electron lifetime is enhanced along with the large-grain crystals compared with the samples from conventional anti-solvent of chlorobenzene.Upon preliminary optimization,the efficiencies of typical and semitransparent BPSCs are improved to as high as 9.54%and 7.51%,respectively.Optical absorption measurement demonstrates that the cell without metal electrode shows 80%transparency in the wavelength range of 550-1000 nm that is perfect for greenhouse vegetation.Considering that the cell absorbs light in the blue spectrum before 550 nm,it offers very high solar cell efficiency with only 17.8%of total photons,while over 60%of total photons can transm让through for photosynthesis if a transparent electrode can be obtained such as indium doped SnO2.展开更多
It is important but challenging to design and fabricate an efficient and cost-effective electrocatalyst for the oxygen evolution reaction(OER). Herein, we report free-standing 3 D nickel arrays with a cross-linked por...It is important but challenging to design and fabricate an efficient and cost-effective electrocatalyst for the oxygen evolution reaction(OER). Herein, we report free-standing 3 D nickel arrays with a cross-linked porous structure as interesting and high-performance electrocatalysts for OER via a facile one-step electrodeposition method. The 3 D nickel arrays are strongly anchored on the substrate, forming self-supported electrocatalysts with reinforced structural stability and high electrical conductivity. Because of their increased active surface area, abundant channels for electron/ion transportation and enhanced electronic conductivity, the designed 3 D nickel arrays exhibit superior electrocatalytic OER performance with a low overpotential(496 mV at 50 mA cm–2) and a small Tafel slope(43 mV dec–1) as well as long-term stability(no decay after 24 h) in alkaline solution. Our proposed rational design strategy may open up a new way to construct other advanced 3 D porous materials for widespread application in electrocatalysis.展开更多
基金supported by the National Key R&D Program of China(2022YFD1200300)the National Nature Science Youth Science Fund Project,China(31801412)+2 种基金the Key R&D Program of Shandong Province,China(2021LZGC026)the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences,China(CXGC2023G02)the Shandong Provincial Program,China(WST2020011)。
文摘Verticillium dahliae is an important fungal pathogen affecting cotton yield and quality.Therefore,the mining of V.dahlia-resistance genes is urgently needed.Proteases and protease inhibitors play crucial roles in plant defense responses.However,the functions and regulatory mechanisms of the protease inhibitor PR6 gene family remain largely unknown.This study provides a comprehensive analysis of the PR6 gene family in the cotton genome.We performed genome-wide identification and functional characterization of the cotton GhPR6 gene family,which belongs to the potato protease inhibitor I family of inhibitors.Thirty-nine PR6s were identified in Gossypium arboreum,G.raimondii,G.barbadense,and G.hirsutum,and they were clustered into four groups.Based on the analysis of pathogen-induced and Ghlmm transcriptome data,Gh PR6-5b was identified as the key gene for V.dahliae resistance.Virus-induced gene silencing experiments revealed that cotton was more sensitive to V.dahliae V991after PR6-5b silencing.The present study established that GhWRKY75 plays an important role in resistance to Verticillium wilt in cotton by positively regulating GhPR6-5b expression by directly binding to the W-box TTGAC(T/C).Our findings established that GhWRKY75 is a potential candidate for improving cotton resistance to V.dahliae,and provide primary information for further investigations and the development of specific strategies to bolster the defense mechanisms of cotton against V.dahliae.
基金financially supported by the National Key R&D Program of China under contact No.2017YFA0204804the National Natural Science Foundation of China under contact Nos.21761142018,21473189 and 22088102 for supporting Fundamental Research Center of Artificial Photosynthesis (FReCAP)。
文摘1.Introduction Solar water splitting offers a promising approach for green hydrogen production[1].There are many ways to achieve solar water splitting,such as photocatalytic(PC)water splitting,photoelectrochemical(PEC)water splitting,and photovoltaicelectrocatalytic(PV-EC)water splitting[2].
基金supported by Key Projects of the Joint Fund of the National Natural Science Foundation of China(U20A20292)The Fundamental Research Funds for the Central Universities(No.JZ2021HGB0090)+2 种基金Key R&D Program of Zhenjiang City(GY2020015)Technology Support Plan(Research on Key Industrial Technologies)(TG202251)Shandong Province Science and Technology SMES Innovation Ability Improvement Project(2023TSGC0005).
文摘Self-excited oscillating jets(SOJ)are used in several practical applications.Their performances are significantly affected by structural parameters and the target distance.In this study,a geometric model of the SOJ nozzle accounting for multiple structural parameters is introduced,then the related cavitation performances and the optimal target distance are investigated using a Large-Eddy Simulation(LES)approach.Results are also provided about an experiment,which was conducted to validate the simulation results.By analyzing the evolution of the vapor volume fraction at the nozzle outlet,a discussion is presented about the effect of the aforementioned structural parameters on the cavitation performances and the target distance.It is shown that the distribution of cavitation clouds at the outlet of the SOJ nozzle displays a non-monotonic trend(first increasing,then decreasing).Under working conditions with an inlet pressure of 4 MPa,a SOJ nozzle outlet/inlet diameter ratio(D_(1)/D_(2))of 1.2,and a chamber diameter ratio(D/L)close to 1.8,the nozzle outlet cavitation performance attains a maximum.The optimal structural parameters correspond to the optimal target distance,which is near 50 mm.The experiments have revealed that the SOJ nozzle with the above parameters displays a good cavitation erosion effect at the target distance of 50 mm,in satisfactory agreement with the numerical simulation results.
基金National Natural Science Foundation Joint Fund Key Project(U20A20292)Task Book for Shandong Provincial Science and Technology Small and Medium-Sized Enterprise Innovation Capability Enhancement Engineering Project(2023TSGC0005).
文摘The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip.The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences.This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation,which need to be analyzed and understood.This study constructed transient flow and rotational speed mathematical models under various degrees of rotor seizure using the test data collected from a dedicated transient rotor seizure test system.Then,bidirectional fluid-solid coupling simulations were conducted to investigate the flow evolution mechanism.It is found that the influence of the impeller structure size and transient braking acceleration on the unsteady head(Hu)is dominant in rotor seizure accident events.Moreover,the present results also show that the rotational acceleration additional head(Hu1)is much higher than the instantaneous head(Hu2).
文摘In this paper, a model averaging method is proposed for varying-coefficient models with response missing at random by establishing a weight selection criterion based on cross-validation. Under certain regularity conditions, it is proved that the proposed method is asymptotically optimal in the sense of achieving the minimum squared error.
基金supported by Zhejiang University K.P.Chao’s High Technology Development Foundation.
文摘The practical applications of zinc metal batteries are plagued by the dendritic propagation of its metal anodes due to the limited transfer rate of charge and mass at the electrode/electrolyte interphase.To enhance the reversibility of Zn metal,a quasi-solid interphase composed by defective metal-organic framework(MOF)nanoparticles(D-UiO-66)and two kinds of zinc salts electrolytes is fabricated on the Zn surface served as a zinc ions reservoir.Particularly,anions in the aqueous electrolytes could be spontaneously anchored onto the Lewis acidic sites in defective MOF channels.With the synergistic effect between the MOF channels and the anchored anions,Zn^(2+)transport is prompted significantly.Simultaneously,such quasi-solid interphase boost charge and mass transfer of Zn^(2+),leading to a high zinc transference number,good ionic conductivity,and high Zn^(2+)concentration near the anode,which mitigates Zn dendrite growth obviously.Encouragingly,unprecedented average coulombic efficiency of 99.8%is achieved in the Zn||Cu cell with the proposed quasi-solid interphase.The cycling performance of D-UiO-66@Zn||MnO_(2)(~92.9%capacity retention after 2000 cycles)and D-UiO-66@Zn||NH_(4)V_(4)O_(10)(~84.0%capacity retention after 800 cycles)prove the feasibility of the quasi-solid interphase.
基金Supported by National Natural Science Foundation of China (Grant No.51775141)Heilongjiang Touyan Innovation Team Program。
文摘The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned above.Harsh environments will lead to solder joints degradation or even failure,resulting in damage to onboard electronics.The research activities on high reliability solder joints using in extreme environments can not only reduce the use of onboard protection devices,but effectively improve the overall reliability of spacecraft,which is of great significance to the aviation industry.In this paper,we review the reliability research on SnPb solder alloys,Sn-based lead-free solder alloys and In-based solder alloys in extreme environments,and try to provide some suggestions for the follow-up studies,which focus on solder joint reliability under extreme environments.
文摘In this paper, three smoothed empirical log-likelihood ratio functions for the parameters of nonlinear models with missing response are suggested. Under some regular conditions, the corresponding Wilks phenomena are obtained and the confidence regions for the parameter can be constructed easily.
文摘A simple and rapid method to prepare efficient electro-competent cells of Xanthomonas campestris pv. campestris was generated, with up to 100-fold transformation efficiencies over the existing procedures. The overnight cultures were treated with sucrose solution and micro-centrifuged at room temperature;the entire electro-competent cells generation process can be completed in 15 minutes. It overcomes the complication and time-consuming shortcomings of the traditional conjugation or electro-transformation methods in this strain. Both the replicative plasmids and non-replicative plasmids could be transformed or integrated efficiently using this method. And the DNA concentration, cells growth stage, field strength and recovery time all had influences on the transformation efficiency. In the optimal conditions, the transformation efficiency for the replicative plasmids was 10<sup>9</sup> transformants per microgram DNA, and for non-replicative plasmids was 150 transformants per microgram DNA. Further with the homology sequences, two chromosomal target genes were deleted efficiently and the knockout strains were obtained easily.
基金This work is supported by National Natural Science Foundation of China(Grant No.51772272,51502263,and 51728204)Fundamental Research Funds for the Central Universities(Grant No.2018QNA4011),Qianjiang Talents Plan D(QJD1602029)+5 种基金Startup Foundation for Hundred-Talent Program of Zhejiang UniversityY.X.acknowledges the support by National Natural Science Foundation of China(21403196)Natural Science Foundation of Zhejiang Province(LY17E020010)W.Z.acknowledges the support by National Natural Science Foundation of China(51572240)Natural Science Foundation of Zhejiang Province(LY16E070004 and 2017C01035)H.H.acknowledges the support by Natural Science Foundation of Zhejiang Province(LY18B030008).
文摘Inspired by high theoretical energy density(-2600 W h kg^(-1))and cost-effectiveness of sulfur cathode,lithium–sulfur batteries are receiving great attention and considered as one of the most promising next-generation high-energy-density batteries.However,over the past decades,the energy density and reliable safety levels as well as the commercial progress of lithium-sulfur batteries are still far from satisfactory due to the disconnection and huge gap between fundamental research and practical application.
基金supported by National Natural Science Foundation of China (Grant Nos. 51728204 and 51772272)Fundamental Research Funds for the Central Universities (Grant No. 2018QNA4011)+2 种基金Qianjiang Talents Plan D (QJD1602029)Startup Foundation for Hundred-Talent Program of Zhejiang Universitythe Fundamental Research Funds for the Central Universities (2015XZZX010-02)
文摘For efficient electrolysis of water for hydrogen generation or other valueadded chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-e ciency metal sulfide electrocatalysts on a large scale. Herein, we construct a new core–branch array and binder-free electrode by growing Ni_3S_2 nanoflake branches on an atomic-layer-deposited(ALD) TiO_2 skeleton. Through induced growth on the ALD-TiO_2 backbone, cross-linked Ni_3S_2 nanoflake branches with exposed { 210} highindex facets are uniformly anchored to the preformed TiO_2 core forming an integrated electrocatalyst. Such a core–branch array structure possesses large active surface area, uniform porous structure, and rich active sites of the exposed { 210 } high-index facet in the Ni_3S_2 nanoflake. Accordingly, the TiO_2@Ni_3S_2 core/branch arrays exhibit remarkable electrocatalytic activities in an alkaline medium, with lower overpotentials for both oxygen evolution reaction(220 mV at 10 mA cm^(-2)) and hydrogen evolution reaction(112 m V at 10 mA cm^(-2)), which are better than those of other Ni_3S_2 counterparts. Stable overall water splitting based on this bifunctional electrolyzer is also demonstrated.
基金supported by the National Natural Science Foundation of China(Grant Nos.51728204 and 51772272)Fundamental Research Funds for the Central Universities(Grant No.2018QNA4011)+1 种基金Qianjiang Talents Plan D(QJD1602029)Startup Foundation for Hundred-Talent Program of Zhejiang University
文摘Metal sulphide electrocatalyst is considered as one of the most promising low-cost candidates for oxygen evolution reaction(OER).In this work,we report a novel free-standing Cu2S branch array via a facile TiO2-induced electrodeposition-sulfurization method.Interestingly,cross-linked Cu2S nanoflake branch is strongly anchored on the TiO2 backbone forming high-quality Cu2S/TiO2/Cu2S core-branch arrays.The branch formation mechanism is also proposed.As compared to the pure Cu2S nanowire arrays,the asprepared Cu2S/TiO2/Cu2S core-branch arrays show much better alkaline OER performance with lower overpotential(284 mV at 10 mA cm^-2)and smaller Tafel slope(72 dec-1)as well as enhanced longterm durability mainly due to larger exposed area and more active electrocatalytic sites.Our work provides a new way for construction of advanced metal sulphide electrocatalysts for electrochemical energy conversion.
基金supported by the National Natural Science Foundation of China (Grant No. 51728204, 51502263, 51772272)Fundamental Research Funds for the Central Universities (2018QNA4011)+2 种基金Qianjiang Talents Plan D (QJD1602029)Program for Innovative Research Team in University of Ministry of Education of China (IRT13037)Startup Foundation for Hundred-Talent Program of Zhejiang University
文摘Rational design of cost-effective high-performance electrocatalysts for oxygen evolution reaction (OER) is of great significance for electrochemical water splitting. Herein, we adopt a nitrogen doping method to fabricate self-supported N-doped CoO nanowire arrays (N-CoO) as active electrocatalysts via a facile hydrothermal combined doping method. The N-CoO nanowires are strongly composited with the carbon cloth substrate forming free-standing electrode with reinforced stability and high electronic conductivity. Owing to the increased accessible and electroactive areas, rich/short pathways for charge transfer and enhanced electronic conductivity, the N-CoO electrode exhibits excellent electrocatalytic performance for OER with a low overpotential (319 mV at 10 mA cm^-2 and 410 mV at 100 mA cm^-2) and a low Tafel slope of 74 mV dec^-1 as well as superior long-term stability with no decay in 24 h continuous test in alkaline solution. Our reported design and optimization strategy provide a promising way to construct interesting well-aligned arrays for application in energy storage and conversion.
基金supported by the National Key Research Program of China (2016YFA0202403)National Nature Science Foundation of China (61674098)+1 种基金the 111 Project (B1404)Chinese National 1000-Talent-Plan program (Grant No. 111001034)
文摘With ideal combination of benefits that selectively converts high photon energy spectrum into electricity while transmitting low energy photo ns for photos yn thesis,the CH3NH3PbBr3 perovskite solar cell(BPSC)is a promising candidate for efficient greenhouse based building integrated photovoltaic(BIPV)applications.However,the efficiency of BPSCs is still much lower than their theoretical efficiency.In general,interface band alignment is regarded as the vital factor of the BPSCs whereas only few reports on enhancing perovskite film quality.In this work,highly efficient BPSCs were fabricated by improving the crystallization process of CH3NH3PbBr3 with the assistance of anti-solvents.A new anti-solvent of diphenyl ether(DPE)was developed for its strong interaction with the solvents in the perovskite precursor solution.By using the anti-solvent of DPE,trap-state density of the CH3NH3PbBr3 film is reduced and the electron lifetime is enhanced along with the large-grain crystals compared with the samples from conventional anti-solvent of chlorobenzene.Upon preliminary optimization,the efficiencies of typical and semitransparent BPSCs are improved to as high as 9.54%and 7.51%,respectively.Optical absorption measurement demonstrates that the cell without metal electrode shows 80%transparency in the wavelength range of 550-1000 nm that is perfect for greenhouse vegetation.Considering that the cell absorbs light in the blue spectrum before 550 nm,it offers very high solar cell efficiency with only 17.8%of total photons,while over 60%of total photons can transm让through for photosynthesis if a transparent electrode can be obtained such as indium doped SnO2.
基金supported by the National Natural Science Foundation of China(51772272,51502263,51728204)the Fundamental Research Funds for the Central Universities(2018QNA4011)+2 种基金Qianjiang Talents Plan of Zhejiang Province(QJD1602029)the Program for Innovative Research Team in University of Ministry of Education of China(IRT13037)the Startup Foundation for Hundred-Talent Program of Zhejiang University~~
文摘It is important but challenging to design and fabricate an efficient and cost-effective electrocatalyst for the oxygen evolution reaction(OER). Herein, we report free-standing 3 D nickel arrays with a cross-linked porous structure as interesting and high-performance electrocatalysts for OER via a facile one-step electrodeposition method. The 3 D nickel arrays are strongly anchored on the substrate, forming self-supported electrocatalysts with reinforced structural stability and high electrical conductivity. Because of their increased active surface area, abundant channels for electron/ion transportation and enhanced electronic conductivity, the designed 3 D nickel arrays exhibit superior electrocatalytic OER performance with a low overpotential(496 mV at 50 mA cm–2) and a small Tafel slope(43 mV dec–1) as well as long-term stability(no decay after 24 h) in alkaline solution. Our proposed rational design strategy may open up a new way to construct other advanced 3 D porous materials for widespread application in electrocatalysis.