We develop a data driven method(probability model) to construct a composite shape descriptor by combining a pair of scale-based shape descriptors. The selection of a pair of scale-based shape descriptors is modeled as...We develop a data driven method(probability model) to construct a composite shape descriptor by combining a pair of scale-based shape descriptors. The selection of a pair of scale-based shape descriptors is modeled as the computation of the union of two events, i.e.,retrieving similar shapes by using a single scale-based shape descriptor. The pair of scale-based shape descriptors with the highest probability forms the composite shape descriptor. Given a shape database, the composite shape descriptors for the shapes constitute a planar point set.A VoR-Tree of the planar point set is then used as an indexing structure for efficient query operation. Experiments and comparisons show the effectiveness and efficiency of the proposed composite shape descriptor.展开更多
基金supported by the National Key R&D Plan of China(2016YFB1001501)
文摘We develop a data driven method(probability model) to construct a composite shape descriptor by combining a pair of scale-based shape descriptors. The selection of a pair of scale-based shape descriptors is modeled as the computation of the union of two events, i.e.,retrieving similar shapes by using a single scale-based shape descriptor. The pair of scale-based shape descriptors with the highest probability forms the composite shape descriptor. Given a shape database, the composite shape descriptors for the shapes constitute a planar point set.A VoR-Tree of the planar point set is then used as an indexing structure for efficient query operation. Experiments and comparisons show the effectiveness and efficiency of the proposed composite shape descriptor.