Data from three cruises conducted in the Zhujiang River (ZR), coastal waters of Guangdong (CWGD) and the northern South China Sea (NSCS) during 2003 and 2004 were examined for assessing the relative importance o...Data from three cruises conducted in the Zhujiang River (ZR), coastal waters of Guangdong (CWGD) and the northern South China Sea (NSCS) during 2003 and 2004 were examined for assessing the relative importance of pigment composition and packaging effect in modifying the specific absorption coefficients of phytoplankton. The three survey regions differ widely in their phytoplankton community with large cells dominating the ZR and CWGD waters and small cells dominating the NSCS region. Variations in the size structure and the accessory pigments have much effect on the chlorophyll a-specific absorption coefficient of phytoplankton. The size index accounted for about 42% and 33% of the variation of the specific absorption coefficient at 440 and 675 nm, respectively. Using the multiple regression analysis approach, pigment concentrations for each sample were calculated. The accessory pigments other than chlorophyll a contribute to absorption mainly in the blue - to - green region of the spectrum and their absorptions account for about 44%, 43% and 53% on the average of the total phytoplankton absorption at 440 nm for the ZR, CWGD and NSCS regions. Among the accessory pigments, the photosynthetic carotenoids (noted PSC) play a dominant role in the ZR and CWGD waters, while in the NSCS the nonphotosynthetic carotenoids (noted PPG) as well as PSC have important contributions. Because the variations of both the size structure and accessory pigments in algal populations contributed to the variability of the specific absorption coefficient in the study regions, these factors may be considered explicitly in future bio - optical algorithms to derive chlorophyll a concentration more accurately.展开更多
The sea-level anomaly (SLA) from a satellite altimeter has a high accuracy and can be used to improve ocean state estimation by assimilation techniques. However, the lack of an accurate mean dynamic topography (MDT...The sea-level anomaly (SLA) from a satellite altimeter has a high accuracy and can be used to improve ocean state estimation by assimilation techniques. However, the lack of an accurate mean dynamic topography (MDT) is still a bothersome issue in an ocean data assimilation. The previous studies showed that the errors in MDT have significant impacts on assimilation results, especially on the time-mean components of ocean states and on the time variant parts of states via nonlinear ocean dynamics. The temporal-spatial differences of three MDTs and their impacts on the SLA analysis are focused on in the South China Sea (SCS). The theoretical analysis shows that even for linear models, the errors in MDT have impacts on the SLA analysis using a sequential data assimilation scheme. Assimilation experiments, based on EnOI scheme and HYCOM, with three MDTs from July 2003 to June 2004 also show that the SLA assimilation is very sensitive to the choice of different MDTs in the SCS with obvious differences between the experimental results and observations in the centre of the SCS and in the vicinity of the Philippine Islands. A new MDT for assimilation of SLA data in the SCS was proposed. The results from the assimilation experiment with this new MDT show a marked reduction (increase) in the RMSEs (correlation coefficient) between the experimental and observed SLA. Furthermore, the subsurface temperature field is also improved with this new MDT in the SCS.展开更多
We provide a general dynamical approach for the quantum Zeno and anti-Zeno effects in an open quantum system under repeated non-demolition measurements. In our approach the repeated measurements are described by a gen...We provide a general dynamical approach for the quantum Zeno and anti-Zeno effects in an open quantum system under repeated non-demolition measurements. In our approach the repeated measurements are described by a general dynamical model without the wave function collapse postulation. Based on that model, we further study both the short-time and long-time evolutions of the open quantum system under repeated non-demolition measurements, and derive the measurement-modified decay rates of the excited state. In the cases with frequent ideal measurements at zero-temperature, we re-obtain the same decay rate as that from the wave function collapse postulation (Nature, 2000, 405: 546). The correction to the ideal decay rate is also obtained under the non-ideal measurements. Especially, we find that the quantum Zeno and anti-Zeno effects are possibly enhanced by the non-ideal natures of measurements. For the open system under measurements with arbitrary period, we generally derive the rate equation for the long-time evolution for the cases with arbitrary temperature and noise spectrum, and show that in the long-time evolution the noise spectrum is effectively tuned by the repeated measurements. Our approach is also able to describe the quantum Zeno and anti-Zeno effects given by the phase modulation pulses, as well as the relevant quantum control schemes.展开更多
Feshbach resonance is a resonance for two-atom scattering with two or more channels,in which a bound state is achieved in one channel.We show that this resonance phenomenon not only exists during the collisions of mas...Feshbach resonance is a resonance for two-atom scattering with two or more channels,in which a bound state is achieved in one channel.We show that this resonance phenomenon not only exists during the collisions of massive particles,but also emerges during the coherent transport of massless particles,that is,photons confined in the coupled resonator arrays linked by a separated cavity or a tunable two level system(TLS).When the TLS is coupled to one array to form a bound state in this setup,the vanishing transmission appears to display the photonic Feshbach resonance.This process can be realized through various experimentally feasible solid state systems,such as the couple defected cavities in photonic crystals and the superconducting qubit coupled to the transmission line.The numerical simulation based on the finite-different time-domain(FDTD) method confirms our assumption about the physical implementation.展开更多
基金This work was supported by the National Natural Science Foundation of China under contract Nos 40476019,40576078 and 5210266the Knowledge Innovation Program of the Chinese Academy of Sciences under contract No.KZCX2-YW-215.
文摘Data from three cruises conducted in the Zhujiang River (ZR), coastal waters of Guangdong (CWGD) and the northern South China Sea (NSCS) during 2003 and 2004 were examined for assessing the relative importance of pigment composition and packaging effect in modifying the specific absorption coefficients of phytoplankton. The three survey regions differ widely in their phytoplankton community with large cells dominating the ZR and CWGD waters and small cells dominating the NSCS region. Variations in the size structure and the accessory pigments have much effect on the chlorophyll a-specific absorption coefficient of phytoplankton. The size index accounted for about 42% and 33% of the variation of the specific absorption coefficient at 440 and 675 nm, respectively. Using the multiple regression analysis approach, pigment concentrations for each sample were calculated. The accessory pigments other than chlorophyll a contribute to absorption mainly in the blue - to - green region of the spectrum and their absorptions account for about 44%, 43% and 53% on the average of the total phytoplankton absorption at 440 nm for the ZR, CWGD and NSCS regions. Among the accessory pigments, the photosynthetic carotenoids (noted PSC) play a dominant role in the ZR and CWGD waters, while in the NSCS the nonphotosynthetic carotenoids (noted PPG) as well as PSC have important contributions. Because the variations of both the size structure and accessory pigments in algal populations contributed to the variability of the specific absorption coefficient in the study regions, these factors may be considered explicitly in future bio - optical algorithms to derive chlorophyll a concentration more accurately.
基金The National Basic Research Program of China under contract Nos 2012CB417404 and 2011CB403504the National Natural Science Foundation of China under contract No. 41075064the National High Technology Research and Development Program of China under contract No. 2008AA09A404-3
文摘The sea-level anomaly (SLA) from a satellite altimeter has a high accuracy and can be used to improve ocean state estimation by assimilation techniques. However, the lack of an accurate mean dynamic topography (MDT) is still a bothersome issue in an ocean data assimilation. The previous studies showed that the errors in MDT have significant impacts on assimilation results, especially on the time-mean components of ocean states and on the time variant parts of states via nonlinear ocean dynamics. The temporal-spatial differences of three MDTs and their impacts on the SLA analysis are focused on in the South China Sea (SCS). The theoretical analysis shows that even for linear models, the errors in MDT have impacts on the SLA analysis using a sequential data assimilation scheme. Assimilation experiments, based on EnOI scheme and HYCOM, with three MDTs from July 2003 to June 2004 also show that the SLA assimilation is very sensitive to the choice of different MDTs in the SCS with obvious differences between the experimental results and observations in the centre of the SCS and in the vicinity of the Philippine Islands. A new MDT for assimilation of SLA data in the SCS was proposed. The results from the assimilation experiment with this new MDT show a marked reduction (increase) in the RMSEs (correlation coefficient) between the experimental and observed SLA. Furthermore, the subsurface temperature field is also improved with this new MDT in the SCS.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074305,10935010,11074261 and 11121403)the National Basic Research Program of China(Grant Nos.2012CB922104 and 2014CB921402)
文摘We provide a general dynamical approach for the quantum Zeno and anti-Zeno effects in an open quantum system under repeated non-demolition measurements. In our approach the repeated measurements are described by a general dynamical model without the wave function collapse postulation. Based on that model, we further study both the short-time and long-time evolutions of the open quantum system under repeated non-demolition measurements, and derive the measurement-modified decay rates of the excited state. In the cases with frequent ideal measurements at zero-temperature, we re-obtain the same decay rate as that from the wave function collapse postulation (Nature, 2000, 405: 546). The correction to the ideal decay rate is also obtained under the non-ideal measurements. Especially, we find that the quantum Zeno and anti-Zeno effects are possibly enhanced by the non-ideal natures of measurements. For the open system under measurements with arbitrary period, we generally derive the rate equation for the long-time evolution for the cases with arbitrary temperature and noise spectrum, and show that in the long-time evolution the noise spectrum is effectively tuned by the repeated measurements. Our approach is also able to describe the quantum Zeno and anti-Zeno effects given by the phase modulation pulses, as well as the relevant quantum control schemes.
基金supported by the National Natural Science Foundation of China (Grant Nos.10474104,60433050 and10704023)the National Basic Research Program of China (Grant Nos.2006CB921205 and 2005CB724508)
文摘Feshbach resonance is a resonance for two-atom scattering with two or more channels,in which a bound state is achieved in one channel.We show that this resonance phenomenon not only exists during the collisions of massive particles,but also emerges during the coherent transport of massless particles,that is,photons confined in the coupled resonator arrays linked by a separated cavity or a tunable two level system(TLS).When the TLS is coupled to one array to form a bound state in this setup,the vanishing transmission appears to display the photonic Feshbach resonance.This process can be realized through various experimentally feasible solid state systems,such as the couple defected cavities in photonic crystals and the superconducting qubit coupled to the transmission line.The numerical simulation based on the finite-different time-domain(FDTD) method confirms our assumption about the physical implementation.