The parallel interference c an cellation for multi-carrier DS-CDMA (which is termed FDC-PIC) is proposed by integrating frequency diversity combination. The simulations are made over FDC- PIC with respect to different...The parallel interference c an cellation for multi-carrier DS-CDMA (which is termed FDC-PIC) is proposed by integrating frequency diversity combination. The simulations are made over FDC- PIC with respect to different decision ways——hard, soft and linear decisions, respectively, and we conclude that FDC-PIC acquires superior performance improv ement over correlation reception of multi-carrier DS CDMA. With an increase in interference cancellation stages, the system performance is improved further. Th e initial 2 stages bring about the most dominant performance improvement, but up to the 3rd stage the system performance is improved little. It is also shown by the simulation results that FDC-PIC with soft decision would exhibit the best performance with a high implementation complexity, while FDC-PIC with linear de cision acquires performance comparable to that of FDC-PIC with soft decision wi th a reduced-complexity if the number of the interference cancellation stages i s the same, which indicates that FDC-PIC with linear decision has optimal perfo rmance/complexity tradeoff and therefore will be suitable for practical applica tion in future.展开更多
基金National Natural Science Foundation of China (60372056)
文摘The parallel interference c an cellation for multi-carrier DS-CDMA (which is termed FDC-PIC) is proposed by integrating frequency diversity combination. The simulations are made over FDC- PIC with respect to different decision ways——hard, soft and linear decisions, respectively, and we conclude that FDC-PIC acquires superior performance improv ement over correlation reception of multi-carrier DS CDMA. With an increase in interference cancellation stages, the system performance is improved further. Th e initial 2 stages bring about the most dominant performance improvement, but up to the 3rd stage the system performance is improved little. It is also shown by the simulation results that FDC-PIC with soft decision would exhibit the best performance with a high implementation complexity, while FDC-PIC with linear de cision acquires performance comparable to that of FDC-PIC with soft decision wi th a reduced-complexity if the number of the interference cancellation stages i s the same, which indicates that FDC-PIC with linear decision has optimal perfo rmance/complexity tradeoff and therefore will be suitable for practical applica tion in future.