期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
磷酸盐型阻垢剂的合成及其阻垢机理研究
1
作者 许海瑞 张艳 楼一珊 《化学工程师》 CAS 2024年第5期111-116,共6页
使用亚磷酸(H_(3)PO_(3))和三氯化磷(PCl_(3))为原料分别合成PC-DETPMP和PA-DETPMP两种磷酸盐型阻垢剂,并使用一种商用磷酸盐型阻垢剂作为参照。合成样品的核磁共振磷谱表明,由H_(3)PO_(3)合成的PC-DETPMP比由PCl_(3)制备的PA-DEPMP含... 使用亚磷酸(H_(3)PO_(3))和三氯化磷(PCl_(3))为原料分别合成PC-DETPMP和PA-DETPMP两种磷酸盐型阻垢剂,并使用一种商用磷酸盐型阻垢剂作为参照。合成样品的核磁共振磷谱表明,由H_(3)PO_(3)合成的PC-DETPMP比由PCl_(3)制备的PA-DEPMP含有更少的磷杂质,这可能是由于PCl_(3)的不完全水解所致。在一种高矿化度地层水中评估了3种磷酸盐型阻垢剂对CaSO_(4)的阻垢效率,并对比其在不同阻垢剂加量和pH值条件下的阻垢性能。结果表明,阻垢性能:PC-DETPMP>CP-DETPMP>PA-DETPMP。为进一步研究其阻垢机理,本文使用离子色谱法测定溶液中SO_(4)^(2-)浓度计算阻垢率,并研究其阻垢行为与时间的关系。在动力学实验中,阻垢剂随时间的延长其性能趋于平稳,以此推测本文磷酸盐型阻垢剂以其分子吸附机制为主。 展开更多
关键词 阻垢剂 DETPMP 硫酸钙 机理
下载PDF
Generating Quantitative Product Profile Using Char-Word CNNs
2
作者 xu hai-rui ZHANG Wei-cheng +1 位作者 LI Ming QIN Fei-wei 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2019年第3期356-378,共23页
The online customer reviews provide important information for product improvement and redesign.However,many reviews are redundant with only several short sentences,which may even conflict with each other on the same a... The online customer reviews provide important information for product improvement and redesign.However,many reviews are redundant with only several short sentences,which may even conflict with each other on the same aspect of a product.Thus it is usually a very challenging task to extract useful design information from the reviews and provide a clear description on the product’s various aspects amongst its competitors.In order to resolve this issue,we propose an approach to build hierarchical product profiles to describe a product’s kernel design aspects quantitatively.It is achieved via three main strategies:a double propagation strategy to achieve the associated features and customers’descriptions;a deep text processing network to build the aspect hierarchy;an aspect ranking approach to quantify each kernel design aspect.Experimental results validate the effectiveness of the proposed approach on online reviews. 展开更多
关键词 customer REVIEWS QUANTITATIVE PRODUCT PROFILE PRODUCT aspect ranking deep learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部