The spatial distribution of clouds and their seasonal variations, and the three-dimensional(3D) cloud structures over East Asia have been analyzed with the CALIPSO-GOCCP data during the period from 2007 to 2012. The r...The spatial distribution of clouds and their seasonal variations, and the three-dimensional(3D) cloud structures over East Asia have been analyzed with the CALIPSO-GOCCP data during the period from 2007 to 2012. The results show that there is a large cloud fraction greater than 0.7 over southern China, and the largest cloud fraction appears in southwest China. Besides, a large cloud fraction occurs over the southeast of the Tibetan Plateau. The total and high cloud fractions show notable variations with seasons, while the middle and low cloud fractions vary a little. As for cloud vertical structure, significant differences of the cloud vertical distributions are observed between over land and ocean. Cloud fractions and the height of the maximum cloud fractions decline gradually with the increasing latitude, except for the vertical-latitude profiles over the Tibetan Plateau regions. The longitude-vertical cross sections show similar patterns from the longitude 70° E to 140° E, except the profiles with large cloud fractions over the Tibetan Plateau. From the horizontal distribution patterns and vertical structures of the clouds over East Asia, it is concluded that the huge terrain of the Tibetan Plateau has significant impacts on the cloud formation over the Tibetan Plateau region and the areas to the east. At last, the clouds from the CALIPSO-GOCCP observations are compared to those from the ERA-Interim reanalysis data. The results indicate that the ERA-Interim reanalysis data provide reasonable spatial distribution patterns and the vertical structures in terms of the total cloud fraction over East Asia. However, the total cloud fraction was underestimated about 20% by the ERA-Interim reanalysis data over most parts of East Asia, especially over the neighboring areas east of the Tibetan Plateau. Additionally, the ERA-interim reanalysis data overestimate the cloud fractions at each level in the vertical direction.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41405006)the China Special Fund for Meteorological Research in the Public Interest(Grant Nos.GYHY201406003+3 种基金GYHY-201406001)the National Basic Research Program of China(Grant No.2012CB417204)the Basic Research Fund of the Chinese Academy of Meteorological Sciences(Grant Nos.2014R0162015Z003)
文摘The spatial distribution of clouds and their seasonal variations, and the three-dimensional(3D) cloud structures over East Asia have been analyzed with the CALIPSO-GOCCP data during the period from 2007 to 2012. The results show that there is a large cloud fraction greater than 0.7 over southern China, and the largest cloud fraction appears in southwest China. Besides, a large cloud fraction occurs over the southeast of the Tibetan Plateau. The total and high cloud fractions show notable variations with seasons, while the middle and low cloud fractions vary a little. As for cloud vertical structure, significant differences of the cloud vertical distributions are observed between over land and ocean. Cloud fractions and the height of the maximum cloud fractions decline gradually with the increasing latitude, except for the vertical-latitude profiles over the Tibetan Plateau regions. The longitude-vertical cross sections show similar patterns from the longitude 70° E to 140° E, except the profiles with large cloud fractions over the Tibetan Plateau. From the horizontal distribution patterns and vertical structures of the clouds over East Asia, it is concluded that the huge terrain of the Tibetan Plateau has significant impacts on the cloud formation over the Tibetan Plateau region and the areas to the east. At last, the clouds from the CALIPSO-GOCCP observations are compared to those from the ERA-Interim reanalysis data. The results indicate that the ERA-Interim reanalysis data provide reasonable spatial distribution patterns and the vertical structures in terms of the total cloud fraction over East Asia. However, the total cloud fraction was underestimated about 20% by the ERA-Interim reanalysis data over most parts of East Asia, especially over the neighboring areas east of the Tibetan Plateau. Additionally, the ERA-interim reanalysis data overestimate the cloud fractions at each level in the vertical direction.