The truncation equation for the derivative nonlinear Schrodinger equation has been dis- cussed in this paper. The existence of a special heteroclinic orbit has been found by using geometrical singular perturbation the...The truncation equation for the derivative nonlinear Schrodinger equation has been dis- cussed in this paper. The existence of a special heteroclinic orbit has been found by using geometrical singular perturbation theory together with Melnikov's technique.展开更多
文摘The truncation equation for the derivative nonlinear Schrodinger equation has been dis- cussed in this paper. The existence of a special heteroclinic orbit has been found by using geometrical singular perturbation theory together with Melnikov's technique.