应用基于栅格的瞬态降水入渗边坡稳定性模型TRIGRS(Transient Rainfall Infiltration and Gridbased Regional Slope-stability M odel),模拟四川省广元市2010年"7·23"特大暴雨过程对边坡稳定性的影响,探讨模型适用性。...应用基于栅格的瞬态降水入渗边坡稳定性模型TRIGRS(Transient Rainfall Infiltration and Gridbased Regional Slope-stability M odel),模拟四川省广元市2010年"7·23"特大暴雨过程对边坡稳定性的影响,探讨模型适用性。结合实际滑坡发生情况,检验广元市不同区域斜坡稳定性变化对降水的响应。为增加模拟过程的可靠度,采用地形指数推算土壤厚度及初始入渗率,配合中国1∶100万土壤及岩性分布图将研究区域分为3个分区,基于已有研究确定模拟所需水土参数。将研究分析所得的滑坡高危区域与实际发生滑坡的区域进行对比,结果显示,坡度较大的陡峭区域出现少量降雨失稳概率即出现明显上升,而坡度较缓区域需经历较长时间降水或短时较大降水,失稳概率才会有明显的升高。模拟结果与"7·23"降水过程中实际发生滑坡区域较为吻合。模型在较为陡峭的山地区域应用良好,在坡度较为平缓,人为干扰因素较多的城市区域存在一定误差。展开更多
This study puts forward an active control method for circular cylinder flow by placing two small affiliated rotating cylinders adjacent to the main cylinder, and their effects on the drag and lift forces acting on the...This study puts forward an active control method for circular cylinder flow by placing two small affiliated rotating cylinders adjacent to the main cylinder, and their effects on the drag and lift forces acting on the main cylinder as well as the heat trans- fer effectiveness are numerically investigated. According to the diameter of the main cylinder the Reynolds number is chosen as Re=200. The well-proven finite volume method is employed for the calculation. The code is validated by comparing the present computed results of flow passing an isolated rotating cylinder with those available from the literature. To describe the present control model, two parameters are defined: the rotation direction of the two small cylinders (including co-current rota- tion and counter-current rotation) and the dimensionless rotation rate a. In the simulation, the rotation rate a varies from 0 to 2.4. The results indicate that the optimum rotation direction of the subsidiary cylinders, which is beneficial to both drag reduc- tion and beat transfer enhancement, is the co-current rotating (the upper affiliated cylinder spins clockwise and the lower affili- ated cylinder spins counter-clockwise). We observe noticeable suppression of the vortex shedding and favorable reduction of the fluid forces acting on the main cylinder as the rotation rate increases. Besides, the pressure and viscous components of the drag force are analyzed. Energy balance between energy cost for activating the rotating cylinders and energy saving by the momentum injection is considered. In addition, the influence of the affiliated rotating cylinders on heat transfer is also investi- gated. The average Nusselt number is found to increase with the rotation rate.展开更多
文摘应用基于栅格的瞬态降水入渗边坡稳定性模型TRIGRS(Transient Rainfall Infiltration and Gridbased Regional Slope-stability M odel),模拟四川省广元市2010年"7·23"特大暴雨过程对边坡稳定性的影响,探讨模型适用性。结合实际滑坡发生情况,检验广元市不同区域斜坡稳定性变化对降水的响应。为增加模拟过程的可靠度,采用地形指数推算土壤厚度及初始入渗率,配合中国1∶100万土壤及岩性分布图将研究区域分为3个分区,基于已有研究确定模拟所需水土参数。将研究分析所得的滑坡高危区域与实际发生滑坡的区域进行对比,结果显示,坡度较大的陡峭区域出现少量降雨失稳概率即出现明显上升,而坡度较缓区域需经历较长时间降水或短时较大降水,失稳概率才会有明显的升高。模拟结果与"7·23"降水过程中实际发生滑坡区域较为吻合。模型在较为陡峭的山地区域应用良好,在坡度较为平缓,人为干扰因素较多的城市区域存在一定误差。
文摘This study puts forward an active control method for circular cylinder flow by placing two small affiliated rotating cylinders adjacent to the main cylinder, and their effects on the drag and lift forces acting on the main cylinder as well as the heat trans- fer effectiveness are numerically investigated. According to the diameter of the main cylinder the Reynolds number is chosen as Re=200. The well-proven finite volume method is employed for the calculation. The code is validated by comparing the present computed results of flow passing an isolated rotating cylinder with those available from the literature. To describe the present control model, two parameters are defined: the rotation direction of the two small cylinders (including co-current rota- tion and counter-current rotation) and the dimensionless rotation rate a. In the simulation, the rotation rate a varies from 0 to 2.4. The results indicate that the optimum rotation direction of the subsidiary cylinders, which is beneficial to both drag reduc- tion and beat transfer enhancement, is the co-current rotating (the upper affiliated cylinder spins clockwise and the lower affili- ated cylinder spins counter-clockwise). We observe noticeable suppression of the vortex shedding and favorable reduction of the fluid forces acting on the main cylinder as the rotation rate increases. Besides, the pressure and viscous components of the drag force are analyzed. Energy balance between energy cost for activating the rotating cylinders and energy saving by the momentum injection is considered. In addition, the influence of the affiliated rotating cylinders on heat transfer is also investi- gated. The average Nusselt number is found to increase with the rotation rate.