期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamics of loose granular flow and its subsequent deposition in a narrow mountainous river 被引量:3
1
作者 LEI Ming xu ze-xing +1 位作者 ZHAO Tao WANG Xie-kang 《Journal of Mountain Science》 SCIE CSCD 2019年第6期1367-1380,共14页
A large amount of loose debris materials were deposited on the slope of mountainous areas after the 2008 Ms 8.0 Wenchuan earthquake. During and after the earthquake, these loose debris deposits collapsed and slide int... A large amount of loose debris materials were deposited on the slope of mountainous areas after the 2008 Ms 8.0 Wenchuan earthquake. During and after the earthquake, these loose debris deposits collapsed and slide into valleys or rivers, changing river sediment supply condition and channel morphology. To investigate the mechanisms of granular flow and deposition, the dynamics of slope failure and sediment transportation in typical mountainous rivers of different intersection angles were analyzed with a coupling model of Computational Fluid Dynamics and Discrete Element Method(CFD-DEM). The numerical results show that the change of intersection angle between the granular flow flume and the river channel can affect the deposit geometry and the fluid flow field significantly. As the intersection angle increases, the granular velocity perpendicular to the river channel increases, while the granular velocity parallel to the river channel decreases gradually. Compared to the test of dry granular flow, the CFD-DEM coupling tests show much higher granular velocity and larger volume of sediments entrained in the river. Due to the river flow, particles located at the edge of the deposition will move downstream gradually and the main section of sediments deposition moves from the center to the edge of the river channel. As a result, sediment supply in the downstream river will distribute unevenly. Under the erosion of fluid flow, the proportion of fine particles increases, while the proportion of coarse particles decreases gradually in the sediment deposition. The build-up of accumulated sediment mass will cause a significant increase in water level in the river channel, thus creating serious flooding hazard in mountainous rivers. 展开更多
关键词 LOOSE DEBRIS materials SEDIMENT supply CFD-DEM coupling method NUMERICAL simulations
下载PDF
Flow variability along a vegetated natural stream under various sediment transport rates 被引量:1
2
作者 WANG Hai-zhou xu ze-xing +1 位作者 Yu Hai-ti WANG Xie-kang 《Journal of Mountain Science》 SCIE CSCD 2018年第11期2347-2364,共18页
The influence of vegetation and sediment on flow characteristics in open channels cannot be neglected. To study the flow variability under the effects of the instream natural vegetation and sediment supply, experiment... The influence of vegetation and sediment on flow characteristics in open channels cannot be neglected. To study the flow variability under the effects of the instream natural vegetation and sediment supply, experiments were conducted with varied water and sediment supply in a movable bed of a river prototype. The instantaneous threedimensional velocities near two types of vegetation patches(the shrub and the weed) and along the centerline of the main channel with vegetation belts were measured using a 3-D side-looking acoustic Doppler velocimetry. The experimental results show that both the instream vegetation and sediment supply strongly affect the flow and turbulence characteristics. In the case of vegetation patches, both the shrub and weed have a considerable influence on the distribution of the streamwise velocity and turbulence intensity of their surrounding water. The streamwise velocity distribution followed as J-shape and linear shape around the weed and shrub under different experimental conditions. The turbulence intensity was large at the top of the weed and shrub;the shrub had its greatest influence on the downstream water flow. In the case of vegetation belts,the streamwise velocity along the centerline of the main channel exhibited an S-shape, J-shape and linear shape at different locations under varied water,vegetation structures and riverbed configurations.The turbulence intensity along the centerline of the main channel ranged from 0.0 to 0.1. The upstream turbulence intensity was affected considerably by a sediment supply, while the downstream turbulence intensity changed with the varied vegetation characteristics and riverbed topography. The second flow coefficient M-value increased longitudinally and was almost positive along the centerline of the main channel, implying that the rotational direction of the secondary current cell was clockwise. 展开更多
关键词 流动特征 可变性 沉积 溪流 自然 生长 运输 植被带
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部