The mono-protonated and di-protonated forms of copper phthalocyanine (CuPc) were obtained by increasing concentrations of trifluoroacetic acid (TFA) solution to a fixed concentration of CuPc solutions. UV-Vis spectrum...The mono-protonated and di-protonated forms of copper phthalocyanine (CuPc) were obtained by increasing concentrations of trifluoroacetic acid (TFA) solution to a fixed concentration of CuPc solutions. UV-Vis spectrum shows that the Q bands of these two derivatives split and shift to the red, which means successive protonation happened and caused the two derivatives to lose their symmetry. After the protonation step, the solubility of protonated CuPc in organic solvent increased 60 times. The CuPc film was fabricated by the electrophoretic deposition (EPD) method from the protonated CuPc dissolved in nitromethane containing TFA. Scanning electron microscopy (SEM) showed that the deposited CuPc film on the indium tin oxide (ITO) substrate is composed of thread-like nanobelts with diameters between 100 nm and 200 nm. Furthermore, the CuPc film is in α phase with stacking direction (b-axis) parallel to the substrate, which was detected by X-ray diffraction.展开更多
Preparation and characterization of perfluorosulfonic resin/titania organic-inorganic hybrid films were presented. The transparent hybrid films were prepared by hydrothermal treatment at low temperature of a mixed sol...Preparation and characterization of perfluorosulfonic resin/titania organic-inorganic hybrid films were presented. The transparent hybrid films were prepared by hydrothermal treatment at low temperature of a mixed solution of tetrabutyl titanate and perfluorosulfonic resin with the help of acetylacetone. The characterization was carried out by SEM,XRD,FT-IR,UV-Vis and TGA. The results showed that the perfluorosulfonic resin/titania hybrid transparent films were composed of titania particles dispersed in the perfluorosulfonic resin matrix very well and the titania was of anatase phase. Its diameter de-creased with increasing weight ratio of titania to perfluorosulfonic resin.展开更多
The multi walled carbon nanotubes(MWNTs) have always been as the catalyst supporting materials,but for high-performance composite catalysts, the dispersion and functionalization of MWNTs are important challenging prob...The multi walled carbon nanotubes(MWNTs) have always been as the catalyst supporting materials,but for high-performance composite catalysts, the dispersion and functionalization of MWNTs are important challenging problems. In this paper, Electrocatalytically active palladium nanoparticles(Pd NPs) on MWNTs with the high-performance and excellent solubility polymer, poly(dimethylbenzimidazolium) iodide(P(DMBI)-I-)as modifier and glue was first discussed. The results of transmission electron microscopy(TEM) demonstrate a better dispersion of MWNTs with the assist of P(DMBI)-I-. The Raman spectra indicate a strong π-π interaction between MWNTs and P(DMBI)-I-. Taking advantages of the coordination effect of imidazole groups and the electrostatic attraction to Pd NPs, the prepared Pd/MWNTs-P(DMBI)-I-(Pd/MPDI-) hybrid is of well electrocatalytic activity to the ethanol fuel cells by electrochemical measurements. So it is believed that P(DMBI)-Ican be further applied in the dispersion of different carbon-based materials and metal nanoparticles for fabricating more novel composites for catalyst and electrode material.展开更多
文摘The mono-protonated and di-protonated forms of copper phthalocyanine (CuPc) were obtained by increasing concentrations of trifluoroacetic acid (TFA) solution to a fixed concentration of CuPc solutions. UV-Vis spectrum shows that the Q bands of these two derivatives split and shift to the red, which means successive protonation happened and caused the two derivatives to lose their symmetry. After the protonation step, the solubility of protonated CuPc in organic solvent increased 60 times. The CuPc film was fabricated by the electrophoretic deposition (EPD) method from the protonated CuPc dissolved in nitromethane containing TFA. Scanning electron microscopy (SEM) showed that the deposited CuPc film on the indium tin oxide (ITO) substrate is composed of thread-like nanobelts with diameters between 100 nm and 200 nm. Furthermore, the CuPc film is in α phase with stacking direction (b-axis) parallel to the substrate, which was detected by X-ray diffraction.
基金Supported by the Hi-Tech Research and Development Program of China (863 Pro-gram)(Grant No. 2004AA329010)
文摘Preparation and characterization of perfluorosulfonic resin/titania organic-inorganic hybrid films were presented. The transparent hybrid films were prepared by hydrothermal treatment at low temperature of a mixed solution of tetrabutyl titanate and perfluorosulfonic resin with the help of acetylacetone. The characterization was carried out by SEM,XRD,FT-IR,UV-Vis and TGA. The results showed that the perfluorosulfonic resin/titania hybrid transparent films were composed of titania particles dispersed in the perfluorosulfonic resin matrix very well and the titania was of anatase phase. Its diameter de-creased with increasing weight ratio of titania to perfluorosulfonic resin.
文摘The multi walled carbon nanotubes(MWNTs) have always been as the catalyst supporting materials,but for high-performance composite catalysts, the dispersion and functionalization of MWNTs are important challenging problems. In this paper, Electrocatalytically active palladium nanoparticles(Pd NPs) on MWNTs with the high-performance and excellent solubility polymer, poly(dimethylbenzimidazolium) iodide(P(DMBI)-I-)as modifier and glue was first discussed. The results of transmission electron microscopy(TEM) demonstrate a better dispersion of MWNTs with the assist of P(DMBI)-I-. The Raman spectra indicate a strong π-π interaction between MWNTs and P(DMBI)-I-. Taking advantages of the coordination effect of imidazole groups and the electrostatic attraction to Pd NPs, the prepared Pd/MWNTs-P(DMBI)-I-(Pd/MPDI-) hybrid is of well electrocatalytic activity to the ethanol fuel cells by electrochemical measurements. So it is believed that P(DMBI)-Ican be further applied in the dispersion of different carbon-based materials and metal nanoparticles for fabricating more novel composites for catalyst and electrode material.