The present study proposes a novel refrigerator in theory, which uses 4He as working fluid to directly reach 2.3 K and uses a small amount of 3He to attain the temperature below 1.7 K. The compact and highly efficient...The present study proposes a novel refrigerator in theory, which uses 4He as working fluid to directly reach 2.3 K and uses a small amount of 3He to attain the temperature below 1.7 K. The compact and highly efficient new refrigerator works with the Vuilleumier cycle. The novel refrigerator is driven by a thermal compressor which creatively uses mix-refrigerants J-T refrigerator alternative to liquid nitrogen as the power source. Furthermore, the Vuilleumier cycle can be used to achieve temperature below liquid helium with the improvement of the ultra-low temperature regenerator material. A new method of reaching the temperature below 1.7 K is proposed on the regenerative refrigerator, which could be an important breakthrough for the cryogenic science and technology.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50890181)
文摘The present study proposes a novel refrigerator in theory, which uses 4He as working fluid to directly reach 2.3 K and uses a small amount of 3He to attain the temperature below 1.7 K. The compact and highly efficient new refrigerator works with the Vuilleumier cycle. The novel refrigerator is driven by a thermal compressor which creatively uses mix-refrigerants J-T refrigerator alternative to liquid nitrogen as the power source. Furthermore, the Vuilleumier cycle can be used to achieve temperature below liquid helium with the improvement of the ultra-low temperature regenerator material. A new method of reaching the temperature below 1.7 K is proposed on the regenerative refrigerator, which could be an important breakthrough for the cryogenic science and technology.