With the aid of computation, we consider the variable-coefficient coupled nonlinear Schrodinger equations with the effects of group-velocity dispersion, self-phase modulation and cross-phase modulation, which have pot...With the aid of computation, we consider the variable-coefficient coupled nonlinear Schrodinger equations with the effects of group-velocity dispersion, self-phase modulation and cross-phase modulation, which have potential applications in the long-distance communication of two-pulse propagation in inhomogeneous optical fibers. Based on the obtained nonisospectral linear eigenvalue problems (i.e. Lax pair), we construct the Darboux transformation for such a model to derive the optical soliton solutions. In addition, through the one- and two-soliton-like solutions, we graphically discuss the features of picosecond solitons in inhomogeneous optical fibers.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.60772023 the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.BUAA-SKLSDE-09KF-04+2 种基金Beijing University of Aeronautics and Astronautics,by the National Basic Research Program of China (973 Program) under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos.20060006024 and 200800130006Chinese Ministry of Education
文摘With the aid of computation, we consider the variable-coefficient coupled nonlinear Schrodinger equations with the effects of group-velocity dispersion, self-phase modulation and cross-phase modulation, which have potential applications in the long-distance communication of two-pulse propagation in inhomogeneous optical fibers. Based on the obtained nonisospectral linear eigenvalue problems (i.e. Lax pair), we construct the Darboux transformation for such a model to derive the optical soliton solutions. In addition, through the one- and two-soliton-like solutions, we graphically discuss the features of picosecond solitons in inhomogeneous optical fibers.