Bound states in the continuum(BICs) can make subwavelength dielectric resonators sustain low radiation leakage, paving a new way to minimize the device size, enhance photoluminescence, and even realize lasing. Here, w...Bound states in the continuum(BICs) can make subwavelength dielectric resonators sustain low radiation leakage, paving a new way to minimize the device size, enhance photoluminescence, and even realize lasing. Here, we present a quasi-BIC-supporting Ga As nanodisk with embedded In As quantum dots as a compact bright on-chip light source, which is realized by heterogeneous integration, avoiding complex multilayered construction and subsequent mismatch and defects. The emitters are grown inside the nanodisk to match the mode field distribution to form strong light–matter interaction. One fabricated sample demonstrates a photoluminescence peak sustaining a quality factor up to 68 enhanced by the quasi-BIC, and the emitting effect can be further promoted by improving the epilayer quality and optimizing the layer-transferring process in the fabrication. This work provides a promising solution to building an ultracompact optical source to be integrated on a silicon photonic chip for high-density integration.展开更多
We report the InAs/GaAs quantum dot laterally coupled distributed feedback(LC-DFB)lasers operating at room temperature in the wavelength range of 1.31μm.First-order chromium Bragg gratings were fabricated alongside t...We report the InAs/GaAs quantum dot laterally coupled distributed feedback(LC-DFB)lasers operating at room temperature in the wavelength range of 1.31μm.First-order chromium Bragg gratings were fabricated alongside the ridge waveguide to obtain the maximum coupling coefficient with the optical field.Stable continuous-wave single-frequency operation has been achieved with output power above 5 mW/facet and side mode suppression ratio exceeding 52 dB.Moreover,a single chip integrating three LC-DFB lasers was tentatively explored.The three LC-DFB lasers on the chip can operate in single mode at room temperature,covering the wavelength span of 35.6 nm.展开更多
基金Shanghai Sailing Program(19YF1456600)Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021232)National Natural Science Foundation of China(61875174,61905269)。
文摘Bound states in the continuum(BICs) can make subwavelength dielectric resonators sustain low radiation leakage, paving a new way to minimize the device size, enhance photoluminescence, and even realize lasing. Here, we present a quasi-BIC-supporting Ga As nanodisk with embedded In As quantum dots as a compact bright on-chip light source, which is realized by heterogeneous integration, avoiding complex multilayered construction and subsequent mismatch and defects. The emitters are grown inside the nanodisk to match the mode field distribution to form strong light–matter interaction. One fabricated sample demonstrates a photoluminescence peak sustaining a quality factor up to 68 enhanced by the quasi-BIC, and the emitting effect can be further promoted by improving the epilayer quality and optimizing the layer-transferring process in the fabrication. This work provides a promising solution to building an ultracompact optical source to be integrated on a silicon photonic chip for high-density integration.
基金supported by the National Key Research and Development Program of China(No.2021YFB2800500).
文摘We report the InAs/GaAs quantum dot laterally coupled distributed feedback(LC-DFB)lasers operating at room temperature in the wavelength range of 1.31μm.First-order chromium Bragg gratings were fabricated alongside the ridge waveguide to obtain the maximum coupling coefficient with the optical field.Stable continuous-wave single-frequency operation has been achieved with output power above 5 mW/facet and side mode suppression ratio exceeding 52 dB.Moreover,a single chip integrating three LC-DFB lasers was tentatively explored.The three LC-DFB lasers on the chip can operate in single mode at room temperature,covering the wavelength span of 35.6 nm.