Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Her...Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Here,we present evidence suggesting that the lysine-specific demethylase 1 inhibitor–tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss,and elucidate its underlying regulatory mechanisms.We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 d B for 4 hours.We found that tranylcypromine treatment led to the upregulation of Sestrin2(SESN2)and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine.The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click,4,8,and 16 k Hz frequencies compared with the noise exposure group treated with saline.These findings indicate that tranylcypromine treatment resulted in increased SESN2,light chain 3B,and lysosome-associated membrane glycoprotein 1 expression after noise exposure,leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3,thereby reducing noise-induced hair cell loss.Additionally,immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway.Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domaincontaining 3(NLRP3)production.In conclusion,our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2,which induced autophagy,thereby restricting NLRP3-related inflammasome signaling,alleviating cochlear hair cell loss,and protecting hearing function.These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.展开更多
Noise-induced hearing loss(NIHL)is primarily driven by inflammatory processes within the cochlea,where noise exposure triggers the activation of the NOD-like receptor protein 3(NLRP3)inflammasome,leading to an inflamm...Noise-induced hearing loss(NIHL)is primarily driven by inflammatory processes within the cochlea,where noise exposure triggers the activation of the NOD-like receptor protein 3(NLRP3)inflammasome,leading to an inflammatory cascade.The interaction between increased NLRP3 expression and NF-κB activity can further amplify cochlear inflammation.Our findings reveal that(R)-PFI-2 hydrochloride,a selective inhibitor of the SETD7 enzyme,effectively inhibits the activation of the cochlear NF-κB pathway,suppresses the release of proinflammatory factors,and prevents inflammasome assembly.This intervention disrupts the perpetuating cycle of inflammation,thereby alleviating damage to cochlear hair cells attributed to acoustic trauma.Consequently,(R)-PFI-2 hydrochloride emerges as a promising pharmacological candidate for NIHL,targeting and moderating the excessive immune and inflammatory responses implicated in the pathology of hearing loss.展开更多
Objective:This study aims to explore the expression patterns of cysteine string protein alpha(CSPα)and cysteine string protein beta(CSPβ)in the mammalian inner ear,with an emphasis on their temporal dynamics during ...Objective:This study aims to explore the expression patterns of cysteine string protein alpha(CSPα)and cysteine string protein beta(CSPβ)in the mammalian inner ear,with an emphasis on their temporal dynamics during the developmental stages of C57BL/6 mice.Methods:We utilized immunofluorescence staining to assess the localization and distribution of CSPαand CSPβwithin the inner ears of C57BL/6 mice and miniature pigs.Additionally,this method facilitated the investigation of their temporal expression profiles.Results:In adult C57BL/6 mice and miniature pigs,CSPαand CSPβwere identified in the cytoplasm of inner hair cells and spiral ganglion cells,yet were absent in outer hair cells.Both proteins were found to colocalize with Ctbp2 on the basal side of the cytoplasm in inner hair cells’basilar membrane.Expression of CSPαwas observed at the nerve fiber termini at the basilar membrane’s base of inner and outer hair cells 10 days postnatally in C57BL/6 mice.Notably,expression of both CSPαand CSPβin the cytoplasm of inner hair cells emerged on the 12th day post-birth,aligning with the timeline for registering cochlear potentials.The expression levels of both proteins increased with age,but were consistently absent in outer hair cells.Contrastingly,expression of CSPαand CSPβwas present in the cytoplasm of inner hair cells in miniature pigs as early as one day post-birth,yet remained absent in the three rows of outer hair cells.Conclusion:CSPαand CSPβexhibit predominant and specific expression in inner hair cells and spiral ganglion cells.A unique expression pattern was observed for CSPα,which was also present at the nerve fiber endings of both inner and outer hair cells.The developmental expression trajectory of CSPαand CSPβin mouse inner hair cells is characterized by an initial absence,followed by a gradual increase.Moreover,the timing of expression onset between mice and miniature pigs indicates distinct temporal dynamics,suggesting a potential role in auditory development.展开更多
Objective:To identify presence of inflammasome activated in mouse cochlea with sensorineural hearing loss (SNHL) caused by cytomegalovirus (CMV) infection. Method:MCMV was injected into the right cerebral hemisphere i...Objective:To identify presence of inflammasome activated in mouse cochlea with sensorineural hearing loss (SNHL) caused by cytomegalovirus (CMV) infection. Method:MCMV was injected into the right cerebral hemisphere in neonatal BALB/c mice at 2000 pfu virus titers. Auditory brainstem responses (ABRs) were tested to evaluate hearing at 21 days. Histopathological studies were conducted to confirm localizations of MCMV infected cells in the inner ear. Expression of inflammasome related factors was assessed by immunofluorescence, Quantitative real-time PCR and Western blotting. Results:In the mouse model of CMV induced SNHL, inflammasome related kinase Caspase-1 and downstream inflammatory factor IL-1b and IL-18 were found increased and activated after CMV infection in the cochlea. These factors could further up-regulate expression of IL-6 and TNF-a. These inflammatory factors are neurotoxicity and may contribute to hearing impairment. Furthermore, we also detected significantly increased AIM2 protein that accumulated in the SGN of cochleae with CMV infection. Significance:We have shown that inflammasome as a novel inherent immunity mechanism may contribute to hearing impairment. Conclusion:Our data indicate that imflammasome assemble in mouse inner ear in response to CMV infection. We have revealed a novel pa-thology event in CMV induced SNHL involving activation of inflammasome in mouse cochlea. Additionally, we have shown that inflammasome may be a novel target for prevention and treatment of CMV related SNHL. Copyright ? 2016, The Authors. Production & hosting by Elsevier (Singapore) Pte Ltd On behalf of PLA General Hospital Department of OtolaryngologyHead and Neck Surgery. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
Natural loess slopes are characterized by a strong geological structure,which is an important factor in maintaining slope stability.The magnitude and duration of the earthquake may disturb the soil structure at differ...Natural loess slopes are characterized by a strong geological structure,which is an important factor in maintaining slope stability.The magnitude and duration of the earthquake may disturb the soil structure at different levels degrees,locally changing the arrangement between soil particles.The process of rainfall humidification weakens the cementation between soil particles,and the disturbance and humidification change the structural state of the soil,which in turn causes sliding of the slope along with the decay of soil mechanical properties.As slope instability is often the result of a series of post-earthquake ripple effects,it is of great scientific significance to study the mechanism of slope instability due to the structural decay of earthquake-damaged loess exacerbated by rainfall.In this paper,the impact of structural decay of loess on slope stability is simulated by GEOSTUDIO software under three conditions:pre-earthquake rainfall,post-earthquake rainfall and earthquake,taking the landslide in Buzi Village,Min County,Gansu Province as an example.The comparative analysis of the calculation results shows that the structural properties of the slope without earthquake disturbance are influenced by infil-tration amount.When it is fully saturated,the structural properties are similar to those of saturated soil,and the safety factor is reduced by 12.9%.In addition,the earthquake intensity and duration have different degrees of structural damage to the soil.When the structure is fully damaged,it is similar to that of remodelled soil,and the safety factor is reduced by 45.84%.Notably,the process of the earthquake and the following humidification generates the most serious damage to the loess structure,with a reduction in the safety factor of up to 56.15%.The quantitative analysis above obviously illustrates that the post-earthquake rainfall causes the most severe damage to structural loess slopes,and the resulting landslide hazard should not be underestimated.展开更多
Objective: To understand the crucial role of the klotho gene in hearing development in mouse models.Methods: PCR was used to identify CBA mice with different genotypes, i.e. WT, heterozygous(klotho +/-)or homozygous(k...Objective: To understand the crucial role of the klotho gene in hearing development in mouse models.Methods: PCR was used to identify CBA mice with different genotypes, i.e. WT, heterozygous(klotho +/-)or homozygous(klotho-/-). Mice phenotype and weight were recorded postnatal 25 days(P-25) and auditory brainstem responses(ABR) were used to determine auditory function at P-60.Results: klotho-/-mice tended to have smaller size, lighter weight and higher ABR thresholds at P-60,showing early onset age-related hearing loss(ARHL).Conclusion: Heterozygous and homozygous klotho deficient mice exhibit different degrees of hearing loss at young age, with homozygous mice(klotho-/-) showing more severe hearing loss. Our results indicate that persisted expression of klotho protein in the inner ear may potentially delay the onset of ARHL and play an important role in the protection of auditory function.展开更多
Objective:To determine whether a new-born child from a family carrying a deafness gene needs cochlear implantation to avoid dysphonia by screening and sequencing a deafness-related gene.Results:Both screening and sequ...Objective:To determine whether a new-born child from a family carrying a deafness gene needs cochlear implantation to avoid dysphonia by screening and sequencing a deafness-related gene.Results:Both screening and sequencing results confirmed that the new born child had a normal GJB2 gene despite the fact that she has a brother suffering from hearing loss triggered by an allelic GJB2 c.176 del 16 mutation.We cloned the GJB2 genes derived from their respective blood genomic DNA into GFP fused plasmids and transfected those plasmids into the 293 T cell line to test for gene function.While the mutated GJB2gene(GJB2 c.176 del 16) of her deaf brother was found to be unable to form the gap junction structure between two adjacent cells,the baby girl’s GJB2 gene ran into no such problems.Conclusion:The screening and sequencing as well as the GJB2 gene function tests invariably showed results consistent with the ABR tested hearing phenotype,which means that the child,with a normal wild type GJB2 gene,does not need early intervention to prevent her from developing hearing loss and dysphonia at a later stage in life.展开更多
Objective:To report detection of vestibular-evoked myogenic potentials (VEMPs) in the miniature pig. Methods:Potentials evoked by 1000 Hz tone bursts were recorded from neck extensor muscles and the masseter muscles i...Objective:To report detection of vestibular-evoked myogenic potentials (VEMPs) in the miniature pig. Methods:Potentials evoked by 1000 Hz tone bursts were recorded from neck extensor muscles and the masseter muscles in normal adult Bama miniature pigs anesthetized with 3%pentobarbital sodium and Carbachol II. Results:The latency of the first positive wave P from neck extensor muscles was 7.65 ± 0.64 ms, with an amplitude of 1.66 ± 0.34 uv and a rate of successful induction of 75%at 80 dB SPL. The latency of potentials evoked from the masseter muscles was 7.60 ± 0.78 ms, with an amplitude of 1.31 ± 0.28 uv and a rate successful induction of 66%at 80 dB SPL. Conclusion:The latencies and thresholds of VEMPs recorded from the neck extensor muscle and the masseter muscle appear to be comparable in normal adult Bama miniature pigs, although the amplitude recorded from the neck extensor muscle seems to be higher than that from the masseter muscle. However, because of their usually relatively superficial and easily accessible location, as well as their large volume and strong contractions, masseter muscles may be better target muscles for recording myogenic potentials.展开更多
Objective:To investigate the membrane localization function of the CX26 protein when its 86th amino acid is Thr, Ser or Arg, and its relations to deafness. Methods:CX26-GFP protein with either Thr, Ser or Arg as the 8...Objective:To investigate the membrane localization function of the CX26 protein when its 86th amino acid is Thr, Ser or Arg, and its relations to deafness. Methods:CX26-GFP protein with either Thr, Ser or Arg as the 86th amino acid was expressed in mouse SGN cells via the GFP fusion type lenti-virus expression system. The membrane localization of the fusion protein was observed under a fluorescence microscope. Results:The mutated protein of CX26 T86S was localized to cell membrane and form gap conjunction structures, showing no difference to the wild type CX26 protein (with Thr as the 86th amino acid). However, the gap conjunction structure disappeared when the mutation was CX26 T86A. Conclusion:These results indicate that the CX26 T86R mutation may be a cause of hearing loss, but CX26 T86S as a non-pathogenic poly-morphism mutation does not affect functions of the CX26 protein. The results are in accordance with the results of clinical screening.展开更多
Droplets impacting solid superhydrophobic surfaces is appealing not only because of scientific interests but also for technological applications such as water-repelling.Recent studies have designed artificial surfaces...Droplets impacting solid superhydrophobic surfaces is appealing not only because of scientific interests but also for technological applications such as water-repelling.Recent studies have designed artificial surfaces in a rigid–flexible hybrid mode to combine asymmetric redistribution and structural oscillation water-repelling principles,resolving strict impacting positioning;however,this is limited by weak mechanical durability.Here we propose a rigid–flexible hybrid surface(RFS)design as a matrix of concave flexible trampolines barred by convex rigid stripes.Such a surface exhibits a 20.1%contact time reduction via the structural oscillation of flexible trampolines,and even to break through the theoretical inertial-capillary limit via the asymmetric redistribution induced by rigid stripes.Moreover,the surface is shown to retain the above water-repelling after 1,000 abrasion cycles against oilstones under a normal load as high as 0.2 N·mm−1.This is the first demonstration of RFSs for synchronous waterproof and wearproof,approaching real-world applications of liquid-repelling.展开更多
Objective:This study aimed to explore andrographolide's mechanism of action and its protective effect on noise-induced hearing loss(NIHL).Materials and Methods:A mice animal model for NIHL was established through ...Objective:This study aimed to explore andrographolide's mechanism of action and its protective effect on noise-induced hearing loss(NIHL).Materials and Methods:A mice animal model for NIHL was established through exposure to broadband noise at 120 d B sound pressure level for 4 h.Transcriptomics analysis and pharmacodynamic experiments were carried out.Results:Andrographolide enters the inner ear and effectively prevents hearing damage following noise exposure in the mice model for permanent hearing loss.Moreover,treatment with andrographolide inhibited the excessive activation of inflammatory factors in the cochleae of noise-exposed mice.Conclusion:Andrographolide might be a promising candidate for auditory protective drug investigation.展开更多
Cellular senescence is an irreversible form of cell cycle arrest that provides a barrier to neoplastic transformation. The integrity of the Rb (Retinoblastoma) pathway is necessary for the formation of the senescenc...Cellular senescence is an irreversible form of cell cycle arrest that provides a barrier to neoplastic transformation. The integrity of the Rb (Retinoblastoma) pathway is necessary for the formation of the senescence-associated heterochromatin foci (SAHF) that offers a molecular basis for the stability of the senescent state. Surprisingly, although high mobility group A2 protein (HMGA2) can promote tumorigenesis and inhibit Rb function in tumor cells, high-level expression of HMGA2 is sufficient to induce SAHF formation in primary cells. It therefore becomes significant to determine whether Rb protein is necessary in HMGA2-induced SAHF formation. In this study, we established the cellular senescence and SAHF assembly W138 cell model by ectopic expression of HMGA2, in which typical senescent markers were seen, including notable upregulation of p53, p21 and p16, and elevated SA-[3-galactosidase staining together with downregulation of E2F target genes. We then showed that the Rb pathway inhibitor E7 protein was able to partly abolish the ability of SAHF formation alter HMGA2 expression in W138 cells, indicating that Rb is a crucial factor for HMGA2-induced SAHF formation. However. Rb depletion did not completely rescue the cell growth arrest induced by HMGA2, suggesting that Rb is not an exclusive pathway for HMGA2-induced senescence in W138 cells.展开更多
Inner ear disorders are a cluster of diseases that cause hearing loss in more than 1.5 billion people worldwide.However,the presence of the blood-labyrinth barrier(BLB)on the surface of the inner ear capillaries great...Inner ear disorders are a cluster of diseases that cause hearing loss in more than 1.5 billion people worldwide.However,the presence of the blood-labyrinth barrier(BLB)on the surface of the inner ear capillaries greatly hinders the effectiveness of systemic drugs for prevention and intervention due to the low permeability,which restricts the entry of most drug compounds from the bloodstream into the inner ear tissue.Here,we report the finding of a novel receptor,low-density lipoprotein receptor-related protein 1(LRP1),that is expressed on the BLB,as a potential target for shuttling therapeutics across this barrier.As a proof-ofconcept,we developed an LRP1-binding peptide,IETP2,and covalently conjugated a series of model small-molecule compounds to it,including potential drugs and imaging agents.All compounds were successfully delivered into the inner ear and inner ear lymph,indicating that targeting the receptor LRP1 is a promising strategy to enhance the permeability of the BLB.The discovery of the receptor LRP1 will illuminate developing strategies for crossing the BLB and for improving systemic drug delivery for inner ear disorders.展开更多
Background: Hematopoiesis is a progressive process collectively controlled by an elaborate network of transcriptionfactors (TFs). Among these TFs, GATA2 has been implicated to be critical for regulating multiple steps...Background: Hematopoiesis is a progressive process collectively controlled by an elaborate network of transcriptionfactors (TFs). Among these TFs, GATA2 has been implicated to be critical for regulating multiple steps of hematopoiesisin mouse models. However, whether similar function of GATA2 is conserved in human hematopoiesis, especially duringearly embryonic development stage, is largely unknown.Results: To examine the role of GATA2 in human background, we generated homozygous GATA2 knockout humanembryonic stem cells (GATA2^(−/−) hESCs) and analyzed their blood differentiation potential. Our results demonstratedthat GATA2^(−/−) hESCs displayed attenuated generation of CD34^(+)CD43^(+) hematopoietic progenitor cells (HPCs), due tothe impairment of endothelial to hematopoietic transition (EHT). Interestingly, GATA2^(−/−) hESCs retained the potentialto generate erythroblasts and macrophages, but never granulocytes. We further identified that SPI1 downregulationwas partially responsible for the defects of GATA2^(−/−) hESCs in generation of CD34^(+)CD43^(+) HPCs and granulocytes.Furthermore, we found that GATA2^(−/−) hESCs restored the granulocyte potential in the presence of Notch signaling.Conclusion: Our findings revealed the essential roles of GATA2 in EHT and granulocyte development throughregulating SPI1, and uncovered a role of Notch signaling in granulocyte generation during hematopoiesis modeled byhuman ESCs.展开更多
Morphological transformation of surface structures is widely manifested in nature and highly preferred for many applications such as wetting interaction;however,in situ tuning of artificial morphologies independent of...Morphological transformation of surface structures is widely manifested in nature and highly preferred for many applications such as wetting interaction;however,in situ tuning of artificial morphologies independent of smart responsive materials remains elusive.Here,with the aid of microfluidics,we develop a pneumatic programmable superrepellent surface by tailoring conventional wetting materials(e.g.,polydimethylsiloxane)with embedded flexible chambers connecting a microfluidic system,thus realizing a morphological transformation for enhanced liquid repellency based on a nature‐inspired rigid‐flexible hybrid principle(i.e.,triggering symmetry breaking and oscillator coupling mechanisms).The enhancement degree can be in situ tuned within around 300 ms owing to pneumatically controllable chamber morphologies.We also demonstrate that the surface can be freely programmed to achieve elaborated morphological pathways and gradients for preferred droplet manipulation such as directional rolling and bouncing.Our study highlights the potential of an in situ morphological transformation to realize tunable wettability and provides a programmable level of droplet control by intellectualizing conventional wetting materials.展开更多
Topological systems containing near-field or far-field couplings between unit cells have been widely investigated in quantum and classic systems.Their band structures are well explained with theories based on tight-bi...Topological systems containing near-field or far-field couplings between unit cells have been widely investigated in quantum and classic systems.Their band structures are well explained with theories based on tight-binding or multiple scattering formalism.However,characteristics of the topology of the bulk bands based on the joint modulation of near-field and far-field couplings are rarely studied.Such hybrid systems are hardly realized in real systems and cannot be described by neither tight-binding nor multiple scattering theories.Here,we propose a hybrid-coupling photonic topological insulator based on a quasi-1D dimerized chain with the coexistence of near-field coupling within the unit cell and far-field coupling among all sites.Both theoretical and experimental results show that topological transition is realized by introducing near-field coupling for given far-field coupling conditions.In addition to closing and reopening the bandgap,the change in near-field coupling modulates the effective mass of photonics in the upper band from positive to negative,leading to an indirect bandgap,which cannot be achieved in conventional dimerized chains with either far-field or near-field coupling only.展开更多
In situ,spatially-resolved synchrotron X-ray diffraction was utilized to investigate the electric fieldinduced heterogenous phase transformation of nonergodic relaxor 0.93Na^(1/2)Bi^(1/2)TiO_(3)-0.07BaTiO_(3) ceramics...In situ,spatially-resolved synchrotron X-ray diffraction was utilized to investigate the electric fieldinduced heterogenous phase transformation of nonergodic relaxor 0.93Na^(1/2)Bi^(1/2)TiO_(3)-0.07BaTiO_(3) ceramics.A Cu electrode was coated on one surface of a rectangular sample by aerosol deposition(AD),while a Pt layer was deposited on the opposite surface by sputter deposition.It is anticipated that a different stress state and/or domain morphology should occur on the AD deposited Cu electrode side due to the particle impact-consolidation deposition process.Under an electric field,different sample regions,i.e.,AD,Middle,and Sputter sides,showed systematic changes in the relaxor to ferroelectric phase transition behavior.In particular,most<001>grains transformed at a sub-coercive field of 0.8 kV/mm,while the majority of the<111>grains only appeared to undergo transitions at a higher field(2.4 kV/mm).Also,the tetragonal phase became the dominant structure at higher field levels.Importantly,both<111>and<001>grains undergo phase switching at lower fields in the region close to the AD-processed layer.The study indicates that the AD process-induced stress can facilitate the electric field-induced relaxor to ferroelectric phase transition,i.e.,the AD Cu side showed more significant lattice strain and domain texture than the sputter Pt side.展开更多
基金supported by the National Key Research and Development Program of China,No.2022YFC2402701(to WC)Key International(Regional)Joint Research Program of the National Natural Science Foundation of China,No.81820108009(to SY)+5 种基金the National Natural Science Foundation of China,Nos.81970890(to WC)and 82371148(to WG)Fujian Provincial Healthcare Young and Middle-aged Backbone Talent Training Project,No.2023GGA035(to XC)Spring City Planthe High-level Talent Promotion and Training Project of Kunming,No.2022SCP001(to SY)the Natural Science Foundation of Hainan Province of China,No.824MS052(to XS)the Sixth Medical Center of Chinese PLA General Hospital Innovation Cultivation,No.CXPY202116(to LX)。
文摘Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Here,we present evidence suggesting that the lysine-specific demethylase 1 inhibitor–tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss,and elucidate its underlying regulatory mechanisms.We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 d B for 4 hours.We found that tranylcypromine treatment led to the upregulation of Sestrin2(SESN2)and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine.The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click,4,8,and 16 k Hz frequencies compared with the noise exposure group treated with saline.These findings indicate that tranylcypromine treatment resulted in increased SESN2,light chain 3B,and lysosome-associated membrane glycoprotein 1 expression after noise exposure,leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3,thereby reducing noise-induced hair cell loss.Additionally,immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway.Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domaincontaining 3(NLRP3)production.In conclusion,our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2,which induced autophagy,thereby restricting NLRP3-related inflammasome signaling,alleviating cochlear hair cell loss,and protecting hearing function.These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.
基金supported by the Science and Technology Development Project of Xuzhou Science and Technology Bureau(KC21249)Science and Technology Development Project of Chongqing(CSTB2022NSCQ-M SX1598)+2 种基金Science and Technology Development Project of Xiaogan(XGKJ2023010010)Scientific Research Startup Foundation of Hainan UniversityScience and Technology Development Project of Hainan.
文摘Noise-induced hearing loss(NIHL)is primarily driven by inflammatory processes within the cochlea,where noise exposure triggers the activation of the NOD-like receptor protein 3(NLRP3)inflammasome,leading to an inflammatory cascade.The interaction between increased NLRP3 expression and NF-κB activity can further amplify cochlear inflammation.Our findings reveal that(R)-PFI-2 hydrochloride,a selective inhibitor of the SETD7 enzyme,effectively inhibits the activation of the cochlear NF-κB pathway,suppresses the release of proinflammatory factors,and prevents inflammasome assembly.This intervention disrupts the perpetuating cycle of inflammation,thereby alleviating damage to cochlear hair cells attributed to acoustic trauma.Consequently,(R)-PFI-2 hydrochloride emerges as a promising pharmacological candidate for NIHL,targeting and moderating the excessive immune and inflammatory responses implicated in the pathology of hearing loss.
基金supported by the Science and Technology Development aid Project of Xuzhou Science and Technology Bureau(KC21249)supported by Hainan Provincial Natural Science Foundation of China(824MS052)Scientific Research Startup Foundation of Hainan University.
文摘Objective:This study aims to explore the expression patterns of cysteine string protein alpha(CSPα)and cysteine string protein beta(CSPβ)in the mammalian inner ear,with an emphasis on their temporal dynamics during the developmental stages of C57BL/6 mice.Methods:We utilized immunofluorescence staining to assess the localization and distribution of CSPαand CSPβwithin the inner ears of C57BL/6 mice and miniature pigs.Additionally,this method facilitated the investigation of their temporal expression profiles.Results:In adult C57BL/6 mice and miniature pigs,CSPαand CSPβwere identified in the cytoplasm of inner hair cells and spiral ganglion cells,yet were absent in outer hair cells.Both proteins were found to colocalize with Ctbp2 on the basal side of the cytoplasm in inner hair cells’basilar membrane.Expression of CSPαwas observed at the nerve fiber termini at the basilar membrane’s base of inner and outer hair cells 10 days postnatally in C57BL/6 mice.Notably,expression of both CSPαand CSPβin the cytoplasm of inner hair cells emerged on the 12th day post-birth,aligning with the timeline for registering cochlear potentials.The expression levels of both proteins increased with age,but were consistently absent in outer hair cells.Contrastingly,expression of CSPαand CSPβwas present in the cytoplasm of inner hair cells in miniature pigs as early as one day post-birth,yet remained absent in the three rows of outer hair cells.Conclusion:CSPαand CSPβexhibit predominant and specific expression in inner hair cells and spiral ganglion cells.A unique expression pattern was observed for CSPα,which was also present at the nerve fiber endings of both inner and outer hair cells.The developmental expression trajectory of CSPαand CSPβin mouse inner hair cells is characterized by an initial absence,followed by a gradual increase.Moreover,the timing of expression onset between mice and miniature pigs indicates distinct temporal dynamics,suggesting a potential role in auditory development.
基金supported by the National Natural Science Foundation of China [grant numbers 31300624]Postdoctoral Science Foundation of China [grant numbers 2015M571818]+1 种基金Six Major Categories Talent [grant numbers 2014-WSN-043]Innovation and Entrepreneurship Training Program for College Student in Jiangsu Province [grant numbers 201510313003Z]
文摘Objective:To identify presence of inflammasome activated in mouse cochlea with sensorineural hearing loss (SNHL) caused by cytomegalovirus (CMV) infection. Method:MCMV was injected into the right cerebral hemisphere in neonatal BALB/c mice at 2000 pfu virus titers. Auditory brainstem responses (ABRs) were tested to evaluate hearing at 21 days. Histopathological studies were conducted to confirm localizations of MCMV infected cells in the inner ear. Expression of inflammasome related factors was assessed by immunofluorescence, Quantitative real-time PCR and Western blotting. Results:In the mouse model of CMV induced SNHL, inflammasome related kinase Caspase-1 and downstream inflammatory factor IL-1b and IL-18 were found increased and activated after CMV infection in the cochlea. These factors could further up-regulate expression of IL-6 and TNF-a. These inflammatory factors are neurotoxicity and may contribute to hearing impairment. Furthermore, we also detected significantly increased AIM2 protein that accumulated in the SGN of cochleae with CMV infection. Significance:We have shown that inflammasome as a novel inherent immunity mechanism may contribute to hearing impairment. Conclusion:Our data indicate that imflammasome assemble in mouse inner ear in response to CMV infection. We have revealed a novel pa-thology event in CMV induced SNHL involving activation of inflammasome in mouse cochlea. Additionally, we have shown that inflammasome may be a novel target for prevention and treatment of CMV related SNHL. Copyright ? 2016, The Authors. Production & hosting by Elsevier (Singapore) Pte Ltd On behalf of PLA General Hospital Department of OtolaryngologyHead and Neck Surgery. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
基金the National Natural Science Foundation of China(51969011)the Gansu Science and Technology Program of China(20JR10RA274,21JR7RA301).
文摘Natural loess slopes are characterized by a strong geological structure,which is an important factor in maintaining slope stability.The magnitude and duration of the earthquake may disturb the soil structure at different levels degrees,locally changing the arrangement between soil particles.The process of rainfall humidification weakens the cementation between soil particles,and the disturbance and humidification change the structural state of the soil,which in turn causes sliding of the slope along with the decay of soil mechanical properties.As slope instability is often the result of a series of post-earthquake ripple effects,it is of great scientific significance to study the mechanism of slope instability due to the structural decay of earthquake-damaged loess exacerbated by rainfall.In this paper,the impact of structural decay of loess on slope stability is simulated by GEOSTUDIO software under three conditions:pre-earthquake rainfall,post-earthquake rainfall and earthquake,taking the landslide in Buzi Village,Min County,Gansu Province as an example.The comparative analysis of the calculation results shows that the structural properties of the slope without earthquake disturbance are influenced by infil-tration amount.When it is fully saturated,the structural properties are similar to those of saturated soil,and the safety factor is reduced by 12.9%.In addition,the earthquake intensity and duration have different degrees of structural damage to the soil.When the structure is fully damaged,it is similar to that of remodelled soil,and the safety factor is reduced by 45.84%.Notably,the process of the earthquake and the following humidification generates the most serious damage to the loess structure,with a reduction in the safety factor of up to 56.15%.The quantitative analysis above obviously illustrates that the post-earthquake rainfall causes the most severe damage to structural loess slopes,and the resulting landslide hazard should not be underestimated.
基金supported by the National Nature Science Foundation of China(81470684,21405130)Postdoctoral Science Foundation of China (2015M571818)+5 种基金Clinical Special Fund of Jiangsu Province (b12014032)Six Major Categories Talent (2014WSN-043,2011-WS-074)Jiangsu Provincial University Fund (16621632)Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (KYLX14-1455,201610313002Z)Colleges and universities Foundation in Jiangsu Province(16621632,16KJB320016)Nature Science planning Foundation of Xuzhou (KC17087)
文摘Objective: To understand the crucial role of the klotho gene in hearing development in mouse models.Methods: PCR was used to identify CBA mice with different genotypes, i.e. WT, heterozygous(klotho +/-)or homozygous(klotho-/-). Mice phenotype and weight were recorded postnatal 25 days(P-25) and auditory brainstem responses(ABR) were used to determine auditory function at P-60.Results: klotho-/-mice tended to have smaller size, lighter weight and higher ABR thresholds at P-60,showing early onset age-related hearing loss(ARHL).Conclusion: Heterozygous and homozygous klotho deficient mice exhibit different degrees of hearing loss at young age, with homozygous mice(klotho-/-) showing more severe hearing loss. Our results indicate that persisted expression of klotho protein in the inner ear may potentially delay the onset of ARHL and play an important role in the protection of auditory function.
基金supported by grants from National Natural Science Foundation of China (81470684)Clinical Special Fund of Jiangsu Province (b12014032)+4 种基金Postdoctoral Science Foundation of China (2015M571818)Six Major Categories Talent (2014-WSN-043,2011-WS-074)Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (201510313003Z,201510313003,KYLX14-1455)Clinic Medical Special Foundation of Jiangsu Province (b12014032)Project of natural science research area of Jiangsu Province (16KJB320016)
文摘Objective:To determine whether a new-born child from a family carrying a deafness gene needs cochlear implantation to avoid dysphonia by screening and sequencing a deafness-related gene.Results:Both screening and sequencing results confirmed that the new born child had a normal GJB2 gene despite the fact that she has a brother suffering from hearing loss triggered by an allelic GJB2 c.176 del 16 mutation.We cloned the GJB2 genes derived from their respective blood genomic DNA into GFP fused plasmids and transfected those plasmids into the 293 T cell line to test for gene function.While the mutated GJB2gene(GJB2 c.176 del 16) of her deaf brother was found to be unable to form the gap junction structure between two adjacent cells,the baby girl’s GJB2 gene ran into no such problems.Conclusion:The screening and sequencing as well as the GJB2 gene function tests invariably showed results consistent with the ABR tested hearing phenotype,which means that the child,with a normal wild type GJB2 gene,does not need early intervention to prevent her from developing hearing loss and dysphonia at a later stage in life.
基金supported by grants from the National Basic Research Program of China (973 Program) (#2012CB967900)National Natural Science Foundation of China (31300624, 81470684)+3 种基金Postdoctoral Science Foundation of China(2015M571818)Six Major Categories Talent (2014-WSN043, 2011-WS-074)Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (201510313003Z, 201510313003, KYLX14-1455)Clinic Medical Special Foundation Of Jiangsu Province (b12014032)
文摘Objective:To report detection of vestibular-evoked myogenic potentials (VEMPs) in the miniature pig. Methods:Potentials evoked by 1000 Hz tone bursts were recorded from neck extensor muscles and the masseter muscles in normal adult Bama miniature pigs anesthetized with 3%pentobarbital sodium and Carbachol II. Results:The latency of the first positive wave P from neck extensor muscles was 7.65 ± 0.64 ms, with an amplitude of 1.66 ± 0.34 uv and a rate of successful induction of 75%at 80 dB SPL. The latency of potentials evoked from the masseter muscles was 7.60 ± 0.78 ms, with an amplitude of 1.31 ± 0.28 uv and a rate successful induction of 66%at 80 dB SPL. Conclusion:The latencies and thresholds of VEMPs recorded from the neck extensor muscle and the masseter muscle appear to be comparable in normal adult Bama miniature pigs, although the amplitude recorded from the neck extensor muscle seems to be higher than that from the masseter muscle. However, because of their usually relatively superficial and easily accessible location, as well as their large volume and strong contractions, masseter muscles may be better target muscles for recording myogenic potentials.
基金supported by grants from the National Basic Research Program of China (973 Program) (#2012CB967900)National Natural Science Foundation of China (31300624, 81470684)+3 种基金Postdoctoral Science Foundation of China (2015M571818)Six Major Categories Talent (2014-WSN043, 2011-WS-074)Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (201510313003Z, 201510313003, KYLX14-1455)Clinic Medical Special Foundation of Jiangsu province (b12014032)
文摘Objective:To investigate the membrane localization function of the CX26 protein when its 86th amino acid is Thr, Ser or Arg, and its relations to deafness. Methods:CX26-GFP protein with either Thr, Ser or Arg as the 86th amino acid was expressed in mouse SGN cells via the GFP fusion type lenti-virus expression system. The membrane localization of the fusion protein was observed under a fluorescence microscope. Results:The mutated protein of CX26 T86S was localized to cell membrane and form gap conjunction structures, showing no difference to the wild type CX26 protein (with Thr as the 86th amino acid). However, the gap conjunction structure disappeared when the mutation was CX26 T86A. Conclusion:These results indicate that the CX26 T86R mutation may be a cause of hearing loss, but CX26 T86S as a non-pathogenic poly-morphism mutation does not affect functions of the CX26 protein. The results are in accordance with the results of clinical screening.
基金supported by the National Natural Science Foundation of China(12002202)Young Elite Scientist Sponsorship Program by the China Association for Science and Technology(YESS20200403)State Key Laboratory of Mechanical System and Vibration(MSVZD202104).
文摘Droplets impacting solid superhydrophobic surfaces is appealing not only because of scientific interests but also for technological applications such as water-repelling.Recent studies have designed artificial surfaces in a rigid–flexible hybrid mode to combine asymmetric redistribution and structural oscillation water-repelling principles,resolving strict impacting positioning;however,this is limited by weak mechanical durability.Here we propose a rigid–flexible hybrid surface(RFS)design as a matrix of concave flexible trampolines barred by convex rigid stripes.Such a surface exhibits a 20.1%contact time reduction via the structural oscillation of flexible trampolines,and even to break through the theoretical inertial-capillary limit via the asymmetric redistribution induced by rigid stripes.Moreover,the surface is shown to retain the above water-repelling after 1,000 abrasion cycles against oilstones under a normal load as high as 0.2 N·mm−1.This is the first demonstration of RFSs for synchronous waterproof and wearproof,approaching real-world applications of liquid-repelling.
基金supported by the Science and Technology Development Aid Project of Xuzhou Science and Technology Bureau(KC21249)the Science and Technology Development Project of Chongqing(CSTB2022NSCQ-M SX1598)+2 种基金Hainan Provincial Natural Science Foundation of China(824MS052)TASLY Special Funding 2023the Scientific Research Startup Foundation of Hainan University。
文摘Objective:This study aimed to explore andrographolide's mechanism of action and its protective effect on noise-induced hearing loss(NIHL).Materials and Methods:A mice animal model for NIHL was established through exposure to broadband noise at 120 d B sound pressure level for 4 h.Transcriptomics analysis and pharmacodynamic experiments were carried out.Results:Andrographolide enters the inner ear and effectively prevents hearing damage following noise exposure in the mice model for permanent hearing loss.Moreover,treatment with andrographolide inhibited the excessive activation of inflammatory factors in the cochleae of noise-exposed mice.Conclusion:Andrographolide might be a promising candidate for auditory protective drug investigation.
基金supported by the grants from the National Natural Science Foundation of China(Nos.31100998 and 31050015)the Fundamental Research Funds for the Central Universities(No.11SSXT132)
文摘Cellular senescence is an irreversible form of cell cycle arrest that provides a barrier to neoplastic transformation. The integrity of the Rb (Retinoblastoma) pathway is necessary for the formation of the senescence-associated heterochromatin foci (SAHF) that offers a molecular basis for the stability of the senescent state. Surprisingly, although high mobility group A2 protein (HMGA2) can promote tumorigenesis and inhibit Rb function in tumor cells, high-level expression of HMGA2 is sufficient to induce SAHF formation in primary cells. It therefore becomes significant to determine whether Rb protein is necessary in HMGA2-induced SAHF formation. In this study, we established the cellular senescence and SAHF assembly W138 cell model by ectopic expression of HMGA2, in which typical senescent markers were seen, including notable upregulation of p53, p21 and p16, and elevated SA-[3-galactosidase staining together with downregulation of E2F target genes. We then showed that the Rb pathway inhibitor E7 protein was able to partly abolish the ability of SAHF formation alter HMGA2 expression in W138 cells, indicating that Rb is a crucial factor for HMGA2-induced SAHF formation. However. Rb depletion did not completely rescue the cell growth arrest induced by HMGA2, suggesting that Rb is not an exclusive pathway for HMGA2-induced senescence in W138 cells.
基金supported by following funds:National Key Research and Development project of China(2020YFC20052003,to S.Y.)National Science and Technology Major Project for Major New Drugs Innovation and Development under grant(2018ZX09711003,to W.Z.)+3 种基金Key International(Regional)Joint Research Program of National Nature Science Foundation of China(81820108009,to S.Y.)National Nature Science Foundation of China(81800916 to X.S.,31471299 and 81522046 to J.L.)The Nature Science Foundation of Xuzhou(KC20177 to X.S.)Jiangsu Provincial University Fund(19KJA560002 to X.S.).
文摘Inner ear disorders are a cluster of diseases that cause hearing loss in more than 1.5 billion people worldwide.However,the presence of the blood-labyrinth barrier(BLB)on the surface of the inner ear capillaries greatly hinders the effectiveness of systemic drugs for prevention and intervention due to the low permeability,which restricts the entry of most drug compounds from the bloodstream into the inner ear tissue.Here,we report the finding of a novel receptor,low-density lipoprotein receptor-related protein 1(LRP1),that is expressed on the BLB,as a potential target for shuttling therapeutics across this barrier.As a proof-ofconcept,we developed an LRP1-binding peptide,IETP2,and covalently conjugated a series of model small-molecule compounds to it,including potential drugs and imaging agents.All compounds were successfully delivered into the inner ear and inner ear lymph,indicating that targeting the receptor LRP1 is a promising strategy to enhance the permeability of the BLB.The discovery of the receptor LRP1 will illuminate developing strategies for crossing the BLB and for improving systemic drug delivery for inner ear disorders.
基金This work was supported by the following:National Basic Research Program of China,973 Program of China(2012CB966503,2011CB965204,2014CB964604)“Strategic Priority Research Program”of the Chinese Academy of Sciences Grant No.XDA01020202+3 种基金National Natural Science Foundation of China(31371514,31200970,81301340)National Natural Science Foundation-Guangdong Joint Fund No.U1132005,National S&T Major Special Project on Major New Drug Innovation,Grant No.2011ZX09102010“Hundred Talents Program”of Chinese Academy of Sciences(to Dr.G Pan)the Equipment Function Development&Technology Innovation Project of the Chinese Academy of Sciences(Grant Nos.yg2012049,yg2011082,and yg2011083)。
文摘Background: Hematopoiesis is a progressive process collectively controlled by an elaborate network of transcriptionfactors (TFs). Among these TFs, GATA2 has been implicated to be critical for regulating multiple steps of hematopoiesisin mouse models. However, whether similar function of GATA2 is conserved in human hematopoiesis, especially duringearly embryonic development stage, is largely unknown.Results: To examine the role of GATA2 in human background, we generated homozygous GATA2 knockout humanembryonic stem cells (GATA2^(−/−) hESCs) and analyzed their blood differentiation potential. Our results demonstratedthat GATA2^(−/−) hESCs displayed attenuated generation of CD34^(+)CD43^(+) hematopoietic progenitor cells (HPCs), due tothe impairment of endothelial to hematopoietic transition (EHT). Interestingly, GATA2^(−/−) hESCs retained the potentialto generate erythroblasts and macrophages, but never granulocytes. We further identified that SPI1 downregulationwas partially responsible for the defects of GATA2^(−/−) hESCs in generation of CD34^(+)CD43^(+) HPCs and granulocytes.Furthermore, we found that GATA2^(−/−) hESCs restored the granulocyte potential in the presence of Notch signaling.Conclusion: Our findings revealed the essential roles of GATA2 in EHT and granulocyte development throughregulating SPI1, and uncovered a role of Notch signaling in granulocyte generation during hematopoiesis modeled byhuman ESCs.
基金National Natural Science Foundation of China,Grant/Award Numbers:12002202,12121002Young Elite Scientist Sponsorship Program by the China Association for Science and Technology,Grant/Award Number:YESS20200403State Key Laboratory of Mechanical System and Vibration,Grant/Award Number:MSVZD202104。
文摘Morphological transformation of surface structures is widely manifested in nature and highly preferred for many applications such as wetting interaction;however,in situ tuning of artificial morphologies independent of smart responsive materials remains elusive.Here,with the aid of microfluidics,we develop a pneumatic programmable superrepellent surface by tailoring conventional wetting materials(e.g.,polydimethylsiloxane)with embedded flexible chambers connecting a microfluidic system,thus realizing a morphological transformation for enhanced liquid repellency based on a nature‐inspired rigid‐flexible hybrid principle(i.e.,triggering symmetry breaking and oscillator coupling mechanisms).The enhancement degree can be in situ tuned within around 300 ms owing to pneumatically controllable chamber morphologies.We also demonstrate that the surface can be freely programmed to achieve elaborated morphological pathways and gradients for preferred droplet manipulation such as directional rolling and bouncing.Our study highlights the potential of an in situ morphological transformation to realize tunable wettability and provides a programmable level of droplet control by intellectualizing conventional wetting materials.
基金National Key Research and Development Program of China(2020YFA0211400,2020YFA0211402)National Natural Science Foundation of China(91850206,11974261,61621001,12104105)+1 种基金Shanghai Pujiang Program(21PJ1411400)Fundamental Research Funds for the Central Universities。
文摘Topological systems containing near-field or far-field couplings between unit cells have been widely investigated in quantum and classic systems.Their band structures are well explained with theories based on tight-binding or multiple scattering formalism.However,characteristics of the topology of the bulk bands based on the joint modulation of near-field and far-field couplings are rarely studied.Such hybrid systems are hardly realized in real systems and cannot be described by neither tight-binding nor multiple scattering theories.Here,we propose a hybrid-coupling photonic topological insulator based on a quasi-1D dimerized chain with the coexistence of near-field coupling within the unit cell and far-field coupling among all sites.Both theoretical and experimental results show that topological transition is realized by introducing near-field coupling for given far-field coupling conditions.In addition to closing and reopening the bandgap,the change in near-field coupling modulates the effective mass of photonics in the upper band from positive to negative,leading to an indirect bandgap,which cannot be achieved in conventional dimerized chains with either far-field or near-field coupling only.
基金This work was supported by the Engineering and Physical Sciences Research Council(Grant number EP/S028978/1).
文摘In situ,spatially-resolved synchrotron X-ray diffraction was utilized to investigate the electric fieldinduced heterogenous phase transformation of nonergodic relaxor 0.93Na^(1/2)Bi^(1/2)TiO_(3)-0.07BaTiO_(3) ceramics.A Cu electrode was coated on one surface of a rectangular sample by aerosol deposition(AD),while a Pt layer was deposited on the opposite surface by sputter deposition.It is anticipated that a different stress state and/or domain morphology should occur on the AD deposited Cu electrode side due to the particle impact-consolidation deposition process.Under an electric field,different sample regions,i.e.,AD,Middle,and Sputter sides,showed systematic changes in the relaxor to ferroelectric phase transition behavior.In particular,most<001>grains transformed at a sub-coercive field of 0.8 kV/mm,while the majority of the<111>grains only appeared to undergo transitions at a higher field(2.4 kV/mm).Also,the tetragonal phase became the dominant structure at higher field levels.Importantly,both<111>and<001>grains undergo phase switching at lower fields in the region close to the AD-processed layer.The study indicates that the AD process-induced stress can facilitate the electric field-induced relaxor to ferroelectric phase transition,i.e.,the AD Cu side showed more significant lattice strain and domain texture than the sputter Pt side.