Thermochemical conversions are pathways for biomass utilization to produce various value-added energy and chemical products. For the development of novel thermochemical conversion technologies, an accurate understandi...Thermochemical conversions are pathways for biomass utilization to produce various value-added energy and chemical products. For the development of novel thermochemical conversion technologies, an accurate understanding of the reaction performance and kinetics is essential. Given the diversity of the thermal analysis techniques, it is necessary to understand the features and limitations of the reactors, ensuring that the selected thermal analysis reactor meets the specific need for reaction characterization. This paper provides a critical overview of the thermal analysis reactors based on the following perspectives: 1) gas flow conditions in the reactor, 2) particle’s external and internal heat and mass transfer limitations, 3) heating rate, 4) temperature distribution, 5) nascent char production and reaction, 6) liquid feeding and atomization, 7) simultaneous sampling and analyzing of bed materials, and 8) reacting atmosphere change. Finally, prospects and future research directions in the development of analysis techniques are proposed.展开更多
The slippery liquid-infused porous surface(s)(SLIPS)that imitates the Nepenthes pitcher plant has proven to be highly versatile and can be combined with various surface characteristics such as dynamic response,antifou...The slippery liquid-infused porous surface(s)(SLIPS)that imitates the Nepenthes pitcher plant has proven to be highly versatile and can be combined with various surface characteristics such as dynamic response,antifouling,selective adhesion,and optical/mechanical tunability.In addition,the introduction of a lubricating fluid layer also gives it extremely low contact angle hysteresis and self-repairing properties,which further expands its application range.Currently,SLIPS has been proven to be suitable for many frontier fields such as aerospace,communications,biomedicine,and microfluidic manipulation.In this review,we explain the theoretical background of SLIPS and the preparation methods currently available,including the choice of substrate materials and lubricants,and we discuss the design parameters of the liquid injection surface and how to deal with the consumption of lubricants in practical applications.In addition,the paper focuses on current and potential applications,such as preventing pathogen contamination of and blood adhesion of medical equipment,manipulation of tiny droplets,and directional transportation of liquids.Finally,some weaknesses that appear when SLIPS is used in these applications are pointed out,which provides a new perspective for the development of SLIPS in the future.展开更多
Pyrolysis of Shenmu coal was performed in fixed-bed reactors indirectly heated by reducing operating pressure and mounting internals in the reactor to explore their synergetic effects on coal pyrolysis. Mounting inter...Pyrolysis of Shenmu coal was performed in fixed-bed reactors indirectly heated by reducing operating pressure and mounting internals in the reactor to explore their synergetic effects on coal pyrolysis. Mounting internals particularly designed greatly improved the heat transfer inside coal bed and raised the yield of tar production.Reducing pressure further facilitated the production of tar through its suppression of secondary reactions occurring in the reactor. The absolute increase in tar yield reached 3.33 wt% in comparison with the pyrolysis in the reactor without internals under atmospheric pressure. The obtained tar yield in the reactor with internals under reduced pressure was even higher than the yield of Gray–King assay. Through experiments in a laboratory fixed bed reactor, it was also clarified that the effect of reducing pressure is related to volatile release rate in pyrolysis. It did not obviously vary tar yield at pyrolysis temperatures below 600 ℃, while the effect was evident at 650 and 700 ℃ but became limited again above 800 ℃. Under reduced pressure the produced tar contained more aliphatics and phenols but less aromatics.展开更多
The present work investigated the synergetic effect of pyrolysis-derived char,tar and gas(py-gas)on NO reduction,which may occur in circulating fluidized-bed decoupling combustion(CFBDC)system treating N-rich fuel.Exp...The present work investigated the synergetic effect of pyrolysis-derived char,tar and gas(py-gas)on NO reduction,which may occur in circulating fluidized-bed decoupling combustion(CFBDC)system treating N-rich fuel.Experiments were carried out in a lab-scale drop-tube reactor for NO reduction by some binary mixtures of reagents including char/py-gas,tar/py-gas and tar/char.At a specified total mass rate of0.15 g·min^-1 for NO-reduction reagent,the char/py-gas(binary reagent)enabled the best synergetic NO reduction in comparison with the others.There existed effective interactions between char and some species in py-gas(i.e.,H2,CxHy)during NO reduction by pyrolysis products,meanwhile the tar/py-gas or tar/char mixture only caused a positive effect when tar proportion was necessarily lowered to about 26%.On the other hand,the synergetic effects were not improved for all tested binary reagents by increasing the reaction temperature and residence time.展开更多
Synaptosomal-associated protein 25 k Da(SNAP-25) is localized on the synapse and participates in exocytosis and neurotransmitter release. Decreased expression of SNAP-25 is associated with Alzheimer's disease and a...Synaptosomal-associated protein 25 k Da(SNAP-25) is localized on the synapse and participates in exocytosis and neurotransmitter release. Decreased expression of SNAP-25 is associated with Alzheimer's disease and attention deficit/hyperactivity disorder. However, the expression of SNAP-25 in spinal cord contusion injury is still unclear. We hypothesized that SNAP-25 is associated with sensory and locomotor functions after spinal cord injury. We established rat models of spinal cord contusion injury to detect gene changes with a gene array. A decreased level of SNAP-25 was detected by quantitative real time-polymerase chain reaction and western blot assay at 1, 3, 7, 14 and 28 days post injury. SNAP-25 was localized in the cytoplasm of neurons of the anterior and posterior horns, which are involved in locomotor and sensory functions. Our data suggest that reduced levels of SNAP-25 are associated with sensory and locomotor functions in rats with spinal cord contusion injury.展开更多
The 2022′s Youth Forum on Resources Chemicals and Materials was held on November 12-13,2022,in Shenyang,Liaoning Province.Panel discussions focus on the cutting-edge researches on“Fine chemicals and advanced alloy m...The 2022′s Youth Forum on Resources Chemicals and Materials was held on November 12-13,2022,in Shenyang,Liaoning Province.Panel discussions focus on the cutting-edge researches on“Fine chemicals and advanced alloy materials”and“Utilization of fossil and renewable carbon resources”.This perspective summarizes the major di-rections of scientific research and technical developments aligned in the discussions.Fine chemical industry tends to pursue green and low-carbon products,intelligent product design,and start manufacturing.In recent years,great efforts have been made for transformation of cellulose into advanced electronic as well as life-service bio-materials and to the high-selectivity extraction of bio-base aromatic chemicals from lignin.Concerning high-end alloy materials,regulating deformation mechanism of crystal to construct bimodal microstructure seems highly prospective in harmonizing precipitate hardening effect and plastic deformation capacity.As we know,utiliza-tion of fossil carbon resources constitutes the major anthropogenic carbon emissions,and the related innovations thus should be,for possibly a long period,on increasing energy production efficiency and low-carbon cascaded conversion of fossil fuels,especially of coal.展开更多
Micro reactors are the essential part of thermal analysis techniques for characterizing gas-solid thermochemical reactions. The dynamic and diversified needs for investigating various complex materials and gas-solid r...Micro reactors are the essential part of thermal analysis techniques for characterizing gas-solid thermochemical reactions. The dynamic and diversified needs for investigating various complex materials and gas-solid reactions have led to the development of a variety of different microreactors over the years. Solid particles in microreactors are normally heated by furnaces from outside, resistive elements from inside, direct contact with bed particles, or other non-resistively methods. Solid particles can be fixed or fluidized in reactors where gas-solid contacts vary from diffusion-dominated to nearly diffusion-free conditions. Based on these characteristics, in this article we presented a broad classification for microreactors used for thermal analysis of gas-solid reactions. For each of the most popularly used microreactors, their features and limitations are briefly reviewed. By addressing the diversity of the microreactors used in the field of thermal analysis, the review aims at providing general guidance for the selection and operation of the microreactor to satisfy one's practical specific needs.展开更多
Molecular dielectric switches constitute a type of intelligent materials that are highly coveted for their distinctive advantages of switchable dielectric responses,lightweight,and mechanical flexibility.Twodimensiona...Molecular dielectric switches constitute a type of intelligent materials that are highly coveted for their distinctive advantages of switchable dielectric responses,lightweight,and mechanical flexibility.Twodimensional(2D)hybrid perovskites have demonstrated excellent promise for assembling dielectric switches,in which the dynamic motions of organic moieties afford driving force to trigger switchable dielectric phase transition.Here,we successfully assembled a new lead-free hybrid double perovskite,(CHA)4Cu Bi Br8(1,CHA=cyclohexylammonium),adopting a typical 2D structural motif,which shows dielectric anisotropy and bistable behaviors during the reversible phase transition near T_(c)=378 K(the Curie temperature).That is,its dielectric constants could be switched and tuned between high-dielectric and low-dielectric states.Structure analyses reveal that the ordered-disordered transformation of the organic CHA+moiety and distortion of inorganic framework account for its phase transition.This result will stimulate further exploration of molecular dielectric switches in this 2D environmentally friendly family.展开更多
Single-cell joint analysis of methylome and transcriptome reveals how the methylation regulates the transcriptional activity.However,traditional bench-top protocols for single-cell DNA methylation and RNA transcriptio...Single-cell joint analysis of methylome and transcriptome reveals how the methylation regulates the transcriptional activity.However,traditional bench-top protocols for single-cell DNA methylation and RNA transcription co-detection are laborintensive,cost-ineffective and contaminant-prone.Herein,we establish the DMF-sc MT-seq,a highly-efficient and cost-effective method to simultaneously analyze single-cell DNA methylation and transcriptional activity based on digital microfluidics.DMFsc MT-seq automates the workflow of single-cell isolation,cellular hypotonic lysis,nucleic acid separation and methylome/transcriptome library construction in a contactless and addressable way.The system ensures high accuracy(R>0.85),high gene detection ability(14,697 genes per cell at 4 million sequencing depth),and high CpG coverage(677,198 CpG sites per cell at 1million sequencing depth).By using DMF-sc MT-seq,the relationship of DNA methylation and RNA transcription under different genomic contexts is resolved.We further apply DMF-sc MT-seq to study the dynamics of transcription regulation with methylation-inhibiting anti-tumor Decitabine,and identify the methylated promoter/gene body driven genes in response to Decitabine treatment.DMF-sc MT-seq facilitates the construction of the correlation of DNA methylation and transcriptional activity at the single-cell level in a flexible,sensitive and accurate way,which is anticipated to be a powerful tool in studying single-cell biological systems.展开更多
We report the controlled fabrication of nitrogen doped graphene(NG)nanoplates,which are uniformly decorated with iron nitride(Fe_(3)N)nanoparticles,via ball milling of mixtures of graphite and iron nitrates and the fo...We report the controlled fabrication of nitrogen doped graphene(NG)nanoplates,which are uniformly decorated with iron nitride(Fe_(3)N)nanoparticles,via ball milling of mixtures of graphite and iron nitrates and the following ammonia annealing.The obtained Fe_(3)N@NG composites demonstrate excellent electrocatalytic activity and durability for oxygen evolution reaction,both of which outperform those of the state-of-the-art iridium oxide catalysts.This may be attributed to nitrogen doping as well as the synergistic effect between Fe3N and graphene nanoplates.展开更多
The high incidence,mortality,and disability associated with ischemic stroke pose a significant threat to human health.The intestinal microbiota significantly influences the onset,progression,and prognosis of ischemic ...The high incidence,mortality,and disability associated with ischemic stroke pose a significant threat to human health.The intestinal microbiota significantly influences the onset,progression,and prognosis of ischemic stroke.Gut flora plays a pivotal role in brain-gut interactions.The reflection of changes in the gut and brain caused by gut microbes faciltates the investigation of early warning biomarkers and potential therapeutic targets for ischemic stroke.In this narrative review of the relationship between gut microbiota and ischemic stroke,we primarily discuss three topics,grounded in real-world human and animal studies.First,we examined the relationship between ischemic stroke and intestinal microbiota and its metabolites,delineate the overall characteristics of intestinal microbiota dysregulation in ischemic stroke,and assess the potential clinical value,prevailing research controversies,and unique phenomena of intestinal microbiota metabolites such as trimethylamine N-oxide and short-chain fatty acids in ischemic stroke.Second,we explored the potential communication pathways between intestinal flora and ischemic stroke based on the brain-gut axis,encompassing metabolic pathways,immune pathways,and neural pathways.Finally,we encapsulated the factors influencing the severity of ischemic stroke via intestinal flora,the pharmacological and nonpharmacological interventions that modulate intestinal flora in treating ischemic stroke,and the current research landscape of intestinal flora in the context of ischemic stroke sequelae.展开更多
Nasopharyngeal carcinoma(NPC)is a malignant tumor that usually occurs in people from Southeast Asia and Southern China.NPC is prone to migration and invasion,leading to poor prognosis.A large number of circular RNAs(c...Nasopharyngeal carcinoma(NPC)is a malignant tumor that usually occurs in people from Southeast Asia and Southern China.NPC is prone to migration and invasion,leading to poor prognosis.A large number of circular RNAs(circ RNAs)exacerbate the process of metastasis in NPC;however,their underlying mechanisms remain unclear.We found that the circular RNA circ CCNB1,encoded by the oncogene CCNB1,was downregulated in NPC biopsies and cell lines.In vitro assays show that circ CCNB1 inhibits NPC cell migration and invasion.Moreover,circ CCNB1 induces a protein,nuclear factor 90(NF90),to bind and prolong the half-life of tight junction protein 1(TJP1)m RNA.Upregulation of TJP1 enhances tight junctions between cancer cells and inhibits NPC cell migration and invasion.This study reveals a novel biological function of circ CCNB1 in the migration and invasion of NPC by enhancing the tight junctions of cancer cells by binding to NF90 proteins and TJP1 m RNA,and may provide a potential therapeutic target for NPC.展开更多
A novel fluorescent sensor was prepared from sulfonated calix[4]arene(SC4A)by the host-guest com-plexation method using the fluorescent dye rhodamine B(RB)as a structure-directing agent.The crystal structure of the ho...A novel fluorescent sensor was prepared from sulfonated calix[4]arene(SC4A)by the host-guest com-plexation method using the fluorescent dye rhodamine B(RB)as a structure-directing agent.The crystal structure of the host-guest complex(RB@(SC4A)_(3))was confirmed by X-ray diffraction studies while its performance and sensing mechanism for metal ion pollutants were characterized using fluorescence and nuclear magnetic resonance spectroscopies.The results showed that RB@(SC4A)_(3) had a triangular branch structure resulting from host-guest mediation of the interactions between the three SC4A host molecules and the three terminal groups of the guest molecule RB.The host-guest complex exhibited sensitive and selective sensing towards Fe^(3+)ions via a fluorescence quenching mechanism.The results indicated that RB@(SC4A)_(3) could be a promising sensitive and selective fluorescent sensor for metal ion pollutants mon-itoring.It also provided new insights into the synthesis of calixarene-based host-guest complex.展开更多
Thermochemical conversion of fuels via pyrolysis/carbonization,cracking,gasification and combustion has to involve a number of individual reactions called attribution reactions to form an intercorrelated reaction netw...Thermochemical conversion of fuels via pyrolysis/carbonization,cracking,gasification and combustion has to involve a number of individual reactions called attribution reactions to form an intercorrelated reaction network for any conversion process.By separating one or some attribution reactions from the others to decouple their interactions existing in the reaction network,the so-called reaction decoupling enables a better understanding of the complex thermal conversion process and further the optimization of the conditions for attribution reactions as well as the entire conversion process to realize advanced performances.The dual bed conversion and two-stage conversion are the two representative types of fuel conversion technologies developed in recent years based on reaction decoupling.Many technical advantages have been proven for such decoupling fuel conversion technologies,such as poly-generation of products,low-cost production of high-grade products,elimination of undesirable products or pollutants,easy operation and control,and so on.The treated fuels with decoupling conversion technologies mainly include solid biomass and coal,as well as liquid petroleum oil.This paper is devoted to reiteration of the reaction decoupling concept and further to reviewing the research,developments and successful applications of several decoupling fuel conversion technologies of two such types by using fluidized bed as their major reactors.展开更多
To utilize low rank coal efficiently,a fluidized bed two-stage(FBTS)gasification process,mainly consisting of a FB pyrolyzer and a transport FB(TFB)gasifier,has been proposed for the production of clean fuel gas.To v...To utilize low rank coal efficiently,a fluidized bed two-stage(FBTS)gasification process,mainly consisting of a FB pyrolyzer and a transport FB(TFB)gasifier,has been proposed for the production of clean fuel gas.To verify the feasibility and technical features of this novel gasification technology,a pilot autothermal platform,with a treating capacity of 100 kg/h for coal,was designed and built up.By adopting a kind of lignite from Inner Mongolia,the running state and fuel gas quality were compared systematically under typical operational conditions.The results show that by keeping the reaction temperatures of pyrolyzer and gasifier at around 840C and 1000C,respectively,the corresponding tar content in fuel gas at the outlets of pyrolyzer and gasifier were 1127 mg/Nm3 and 365 mg/Nm3,reaching a high tar removal efficiency.Under the stable operation state,the volume fractions of CO,H2,CH4 and CO2 in fuel gas were 14.4%,8.3%,3.4%and 11.3%,respectively,and the corresponding higher heating value of fuel gas was about 1100 kcal/Nm3.Compared with the tar from pyrolyzer,the heavy oil fraction in tar from gasifier reduced significantly,while the light oil components increased sharply simultaneously,showing significant effect of catalytic reforming by hot char bed on tar removal.展开更多
Tar catalytic removal by char is a promising technology for gasification process because of its porous structure,good catalytic activity,low cost,and easy to treatment after deactivation.To provide comprehensive infor...Tar catalytic removal by char is a promising technology for gasification process because of its porous structure,good catalytic activity,low cost,and easy to treatment after deactivation.To provide comprehensive information on the tar catalytic removal by char,this study focuses on the ongoing efforts and advances from fundamental researches to the industrial applications.The tar removal efficiency by char much depends on reaction conditions and char property,such as char origin,porous structure,the functional group on char surface,carbon structure,and AAEM components.The typical reaction kinetics,reaction mechanism,and the deactivation,will be introduced.Then,for the different gasification processes,the potential or typical applications of tar removal by char are discussed and compared.Finally,a comprehensive analysis and improvement in scaling up,commercializing tar removal technologies and integrating the gasification process,are also evaluated and analyzed in this review.展开更多
This study investigated the characteristics of pyrolysis for waste tire particles in the newly developed fixed-bed reactor with internals that are a central gas collection channel mounted inside reactor.And a few meta...This study investigated the characteristics of pyrolysis for waste tire particles in the newly developed fixed-bed reactor with internals that are a central gas collection channel mounted inside reactor.And a few metallic plates vertically welded on the internal wall of the reactors and extending to the region closing their central gas collection pipe walls.Experiments were conducted in two laboratory fixed bed reactors with or without the internals.The results shown that employing internals produced more light oil at externally heating temperatures above 700℃due to the inhibited secondary reactions in the reactor.The oil from the reactor with internals contained more aliphatic hydrocarbons and fewer aromatic hydrocarbons,leading to its higher H/C atomic ratios as for crude petroleum oil.The char yield was relatively stable for two beds and showed the higher heating values(HHVs)of about 23 MJ/kg.The gaseous product of pyrolysis mainly consisted of H2 and CH4,but the use of internals led to less pyrolysis gas through its promotion of oil production.展开更多
Fuel conversion and clean energy reaction systems involve a variety of catalytic and non-catalytic gas-solid thermochemical reactions.A good understanding of the correct reaction mechanism and kinetics,as well as the ...Fuel conversion and clean energy reaction systems involve a variety of catalytic and non-catalytic gas-solid thermochemical reactions.A good understanding of the correct reaction mechanism and kinetics,as well as the profiles of reaction products,is of great significance to the development,design,and operation of such reaction systems.The micro fluidized bed reaction analysis provides an efficient and reliable method to acquire this essential information with low capital and operating costs,low energy consumption and enhanced safety.This paper provides an overview of the system and its characteristics for the micro fluidized bed reaction analyzer that has been well proven to be a reliable new approach as well as an instrument for characterizing various gas-solid thermochemical reactions.展开更多
基金supported by the National Natural Science Foundation of China(U1908201,U1903130)the Ministry of Science and Technology of the People’s Republic of China(2020YFC1909300)the Natural Science Foundation of Liaoning Province of China(2021-NLTS-12-09).
文摘Thermochemical conversions are pathways for biomass utilization to produce various value-added energy and chemical products. For the development of novel thermochemical conversion technologies, an accurate understanding of the reaction performance and kinetics is essential. Given the diversity of the thermal analysis techniques, it is necessary to understand the features and limitations of the reactors, ensuring that the selected thermal analysis reactor meets the specific need for reaction characterization. This paper provides a critical overview of the thermal analysis reactors based on the following perspectives: 1) gas flow conditions in the reactor, 2) particle’s external and internal heat and mass transfer limitations, 3) heating rate, 4) temperature distribution, 5) nascent char production and reaction, 6) liquid feeding and atomization, 7) simultaneous sampling and analyzing of bed materials, and 8) reacting atmosphere change. Finally, prospects and future research directions in the development of analysis techniques are proposed.
基金This work was financially supported by the National Natural Science Foundation of China(No.51735013)。
文摘The slippery liquid-infused porous surface(s)(SLIPS)that imitates the Nepenthes pitcher plant has proven to be highly versatile and can be combined with various surface characteristics such as dynamic response,antifouling,selective adhesion,and optical/mechanical tunability.In addition,the introduction of a lubricating fluid layer also gives it extremely low contact angle hysteresis and self-repairing properties,which further expands its application range.Currently,SLIPS has been proven to be suitable for many frontier fields such as aerospace,communications,biomedicine,and microfluidic manipulation.In this review,we explain the theoretical background of SLIPS and the preparation methods currently available,including the choice of substrate materials and lubricants,and we discuss the design parameters of the liquid injection surface and how to deal with the consumption of lubricants in practical applications.In addition,the paper focuses on current and potential applications,such as preventing pathogen contamination of and blood adhesion of medical equipment,manipulation of tiny droplets,and directional transportation of liquids.Finally,some weaknesses that appear when SLIPS is used in these applications are pointed out,which provides a new perspective for the development of SLIPS in the future.
基金Supported by the National Natural Science Foundation of China(21376250)National Basic Research Program of China(2014CB744303)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA07010100)
文摘Pyrolysis of Shenmu coal was performed in fixed-bed reactors indirectly heated by reducing operating pressure and mounting internals in the reactor to explore their synergetic effects on coal pyrolysis. Mounting internals particularly designed greatly improved the heat transfer inside coal bed and raised the yield of tar production.Reducing pressure further facilitated the production of tar through its suppression of secondary reactions occurring in the reactor. The absolute increase in tar yield reached 3.33 wt% in comparison with the pyrolysis in the reactor without internals under atmospheric pressure. The obtained tar yield in the reactor with internals under reduced pressure was even higher than the yield of Gray–King assay. Through experiments in a laboratory fixed bed reactor, it was also clarified that the effect of reducing pressure is related to volatile release rate in pyrolysis. It did not obviously vary tar yield at pyrolysis temperatures below 600 ℃, while the effect was evident at 650 and 700 ℃ but became limited again above 800 ℃. Under reduced pressure the produced tar contained more aliphatics and phenols but less aromatics.
基金Supported by the National Basic Research Program of China(2014BAC26B04,2014CB744303)the National Natural Science Foundation of China(U1302273)
文摘The present work investigated the synergetic effect of pyrolysis-derived char,tar and gas(py-gas)on NO reduction,which may occur in circulating fluidized-bed decoupling combustion(CFBDC)system treating N-rich fuel.Experiments were carried out in a lab-scale drop-tube reactor for NO reduction by some binary mixtures of reagents including char/py-gas,tar/py-gas and tar/char.At a specified total mass rate of0.15 g·min^-1 for NO-reduction reagent,the char/py-gas(binary reagent)enabled the best synergetic NO reduction in comparison with the others.There existed effective interactions between char and some species in py-gas(i.e.,H2,CxHy)during NO reduction by pyrolysis products,meanwhile the tar/py-gas or tar/char mixture only caused a positive effect when tar proportion was necessarily lowered to about 26%.On the other hand,the synergetic effects were not improved for all tested binary reagents by increasing the reaction temperature and residence time.
基金supported by the National Undergraduate Innovation Training Project of China,No.201313705005
文摘Synaptosomal-associated protein 25 k Da(SNAP-25) is localized on the synapse and participates in exocytosis and neurotransmitter release. Decreased expression of SNAP-25 is associated with Alzheimer's disease and attention deficit/hyperactivity disorder. However, the expression of SNAP-25 in spinal cord contusion injury is still unclear. We hypothesized that SNAP-25 is associated with sensory and locomotor functions after spinal cord injury. We established rat models of spinal cord contusion injury to detect gene changes with a gene array. A decreased level of SNAP-25 was detected by quantitative real time-polymerase chain reaction and western blot assay at 1, 3, 7, 14 and 28 days post injury. SNAP-25 was localized in the cytoplasm of neurons of the anterior and posterior horns, which are involved in locomotor and sensory functions. Our data suggest that reduced levels of SNAP-25 are associated with sensory and locomotor functions in rats with spinal cord contusion injury.
基金supported by The Liaoning Industrial Technology Insti-tute,and organized by Shenyang University of Chemical Technology.
文摘The 2022′s Youth Forum on Resources Chemicals and Materials was held on November 12-13,2022,in Shenyang,Liaoning Province.Panel discussions focus on the cutting-edge researches on“Fine chemicals and advanced alloy materials”and“Utilization of fossil and renewable carbon resources”.This perspective summarizes the major di-rections of scientific research and technical developments aligned in the discussions.Fine chemical industry tends to pursue green and low-carbon products,intelligent product design,and start manufacturing.In recent years,great efforts have been made for transformation of cellulose into advanced electronic as well as life-service bio-materials and to the high-selectivity extraction of bio-base aromatic chemicals from lignin.Concerning high-end alloy materials,regulating deformation mechanism of crystal to construct bimodal microstructure seems highly prospective in harmonizing precipitate hardening effect and plastic deformation capacity.As we know,utiliza-tion of fossil carbon resources constitutes the major anthropogenic carbon emissions,and the related innovations thus should be,for possibly a long period,on increasing energy production efficiency and low-carbon cascaded conversion of fossil fuels,especially of coal.
基金supported by both the National Natural Science Foundation of China(U1903130 and U1908201)the Ministry of Science and Technology of the People's Republic of China(2020YFC1909300).
文摘Micro reactors are the essential part of thermal analysis techniques for characterizing gas-solid thermochemical reactions. The dynamic and diversified needs for investigating various complex materials and gas-solid reactions have led to the development of a variety of different microreactors over the years. Solid particles in microreactors are normally heated by furnaces from outside, resistive elements from inside, direct contact with bed particles, or other non-resistively methods. Solid particles can be fixed or fluidized in reactors where gas-solid contacts vary from diffusion-dominated to nearly diffusion-free conditions. Based on these characteristics, in this article we presented a broad classification for microreactors used for thermal analysis of gas-solid reactions. For each of the most popularly used microreactors, their features and limitations are briefly reviewed. By addressing the diversity of the microreactors used in the field of thermal analysis, the review aims at providing general guidance for the selection and operation of the microreactor to satisfy one's practical specific needs.
基金financially supported by National Natural Science Foundation of China(Nos.22125110,22205233,22193042,21833010,21921001,and U21A2069)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.ZDBSLY-SLH024)+3 种基金the National Postdoctoral Program for Innovative Talents(No.BX2021315)the National Key Research and Development Program of China(No.2019YFA0210402)the China Postdoctoral Science Fund(No.2022TQ0337)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZR126)。
文摘Molecular dielectric switches constitute a type of intelligent materials that are highly coveted for their distinctive advantages of switchable dielectric responses,lightweight,and mechanical flexibility.Twodimensional(2D)hybrid perovskites have demonstrated excellent promise for assembling dielectric switches,in which the dynamic motions of organic moieties afford driving force to trigger switchable dielectric phase transition.Here,we successfully assembled a new lead-free hybrid double perovskite,(CHA)4Cu Bi Br8(1,CHA=cyclohexylammonium),adopting a typical 2D structural motif,which shows dielectric anisotropy and bistable behaviors during the reversible phase transition near T_(c)=378 K(the Curie temperature).That is,its dielectric constants could be switched and tuned between high-dielectric and low-dielectric states.Structure analyses reveal that the ordered-disordered transformation of the organic CHA+moiety and distortion of inorganic framework account for its phase transition.This result will stimulate further exploration of molecular dielectric switches in this 2D environmentally friendly family.
基金supported by the National Natural Science Foundation of China(21927806,22204132,22104080)the National Key R&D Program of China(2019YFA0905800)+1 种基金the Innovative Research Team of High-Level Local Universities in Shanghai,and the Fundamental Research Funds for the Central Universities(2072021000,20720210005)the Natural Science Foundation of Fujian Province(2022J011360)。
文摘Single-cell joint analysis of methylome and transcriptome reveals how the methylation regulates the transcriptional activity.However,traditional bench-top protocols for single-cell DNA methylation and RNA transcription co-detection are laborintensive,cost-ineffective and contaminant-prone.Herein,we establish the DMF-sc MT-seq,a highly-efficient and cost-effective method to simultaneously analyze single-cell DNA methylation and transcriptional activity based on digital microfluidics.DMFsc MT-seq automates the workflow of single-cell isolation,cellular hypotonic lysis,nucleic acid separation and methylome/transcriptome library construction in a contactless and addressable way.The system ensures high accuracy(R>0.85),high gene detection ability(14,697 genes per cell at 4 million sequencing depth),and high CpG coverage(677,198 CpG sites per cell at 1million sequencing depth).By using DMF-sc MT-seq,the relationship of DNA methylation and RNA transcription under different genomic contexts is resolved.We further apply DMF-sc MT-seq to study the dynamics of transcription regulation with methylation-inhibiting anti-tumor Decitabine,and identify the methylated promoter/gene body driven genes in response to Decitabine treatment.DMF-sc MT-seq facilitates the construction of the correlation of DNA methylation and transcriptional activity at the single-cell level in a flexible,sensitive and accurate way,which is anticipated to be a powerful tool in studying single-cell biological systems.
基金supported by the Open Research Fund Program of State Environmental Protection Key Laboratory of Food Chain Pollution Control(FC2022YB05,FC2022YB03)National Key Research and Development Program of China(2022YFE0105800)+2 种基金Shandong Top Talent Special Foundation(0031504),Natural Science Foundation of Beijing Municipality(8222042)Huzhou Science and Technology Project(2023GZ60)Special Research Funds of Shandong Jianzhu University(X20077Z0101 and X20087Z0101).
文摘We report the controlled fabrication of nitrogen doped graphene(NG)nanoplates,which are uniformly decorated with iron nitride(Fe_(3)N)nanoparticles,via ball milling of mixtures of graphite and iron nitrates and the following ammonia annealing.The obtained Fe_(3)N@NG composites demonstrate excellent electrocatalytic activity and durability for oxygen evolution reaction,both of which outperform those of the state-of-the-art iridium oxide catalysts.This may be attributed to nitrogen doping as well as the synergistic effect between Fe3N and graphene nanoplates.
基金National Natural Science Foundationof China,Grant/Award Numbers:81901173,82060231,82360252National Natural Science Foundation Cultivation Projectof Affiliated Hospital of Guizhou Medical University,Grant/Award Number:2022-08+1 种基金Guizhou Province Department of Science and Technology,Grant/Award Number:Qian Ke He JiChu-ZK-[2023]-Key 039Doctoral Research Start-up Fund,Grant/Award Number:gytybsky-2021-6。
文摘The high incidence,mortality,and disability associated with ischemic stroke pose a significant threat to human health.The intestinal microbiota significantly influences the onset,progression,and prognosis of ischemic stroke.Gut flora plays a pivotal role in brain-gut interactions.The reflection of changes in the gut and brain caused by gut microbes faciltates the investigation of early warning biomarkers and potential therapeutic targets for ischemic stroke.In this narrative review of the relationship between gut microbiota and ischemic stroke,we primarily discuss three topics,grounded in real-world human and animal studies.First,we examined the relationship between ischemic stroke and intestinal microbiota and its metabolites,delineate the overall characteristics of intestinal microbiota dysregulation in ischemic stroke,and assess the potential clinical value,prevailing research controversies,and unique phenomena of intestinal microbiota metabolites such as trimethylamine N-oxide and short-chain fatty acids in ischemic stroke.Second,we explored the potential communication pathways between intestinal flora and ischemic stroke based on the brain-gut axis,encompassing metabolic pathways,immune pathways,and neural pathways.Finally,we encapsulated the factors influencing the severity of ischemic stroke via intestinal flora,the pharmacological and nonpharmacological interventions that modulate intestinal flora in treating ischemic stroke,and the current research landscape of intestinal flora in the context of ischemic stroke sequelae.
基金the National Natural Science Foundation of China(82002239,82072374 and 82073135)the Overseas Expertise Introduction Project for Discipline Innovation(111 Project,111-2-12)+1 种基金the Natural Science Foundation of Hunan Province(2021JJ41043 and 2021JJ30897)Central South University Graduate Research and Innovation Project(2021zzts0310)。
文摘Nasopharyngeal carcinoma(NPC)is a malignant tumor that usually occurs in people from Southeast Asia and Southern China.NPC is prone to migration and invasion,leading to poor prognosis.A large number of circular RNAs(circ RNAs)exacerbate the process of metastasis in NPC;however,their underlying mechanisms remain unclear.We found that the circular RNA circ CCNB1,encoded by the oncogene CCNB1,was downregulated in NPC biopsies and cell lines.In vitro assays show that circ CCNB1 inhibits NPC cell migration and invasion.Moreover,circ CCNB1 induces a protein,nuclear factor 90(NF90),to bind and prolong the half-life of tight junction protein 1(TJP1)m RNA.Upregulation of TJP1 enhances tight junctions between cancer cells and inhibits NPC cell migration and invasion.This study reveals a novel biological function of circ CCNB1 in the migration and invasion of NPC by enhancing the tight junctions of cancer cells by binding to NF90 proteins and TJP1 m RNA,and may provide a potential therapeutic target for NPC.
基金the National Natural Science Foundation of China (NSFC, No. 21861011)the Innovation Program for High-level Talents of Guizhou Province (No. 2016–5657) are gratefully acknowledged for financial support
文摘A novel fluorescent sensor was prepared from sulfonated calix[4]arene(SC4A)by the host-guest com-plexation method using the fluorescent dye rhodamine B(RB)as a structure-directing agent.The crystal structure of the host-guest complex(RB@(SC4A)_(3))was confirmed by X-ray diffraction studies while its performance and sensing mechanism for metal ion pollutants were characterized using fluorescence and nuclear magnetic resonance spectroscopies.The results showed that RB@(SC4A)_(3) had a triangular branch structure resulting from host-guest mediation of the interactions between the three SC4A host molecules and the three terminal groups of the guest molecule RB.The host-guest complex exhibited sensitive and selective sensing towards Fe^(3+)ions via a fluorescence quenching mechanism.The results indicated that RB@(SC4A)_(3) could be a promising sensitive and selective fluorescent sensor for metal ion pollutants mon-itoring.It also provided new insights into the synthesis of calixarene-based host-guest complex.
基金The authors are grateful to financial support of the National Basic Research Program of China(2014CB744303)the National Natural Science Foundation of China(91534125).
文摘Thermochemical conversion of fuels via pyrolysis/carbonization,cracking,gasification and combustion has to involve a number of individual reactions called attribution reactions to form an intercorrelated reaction network for any conversion process.By separating one or some attribution reactions from the others to decouple their interactions existing in the reaction network,the so-called reaction decoupling enables a better understanding of the complex thermal conversion process and further the optimization of the conditions for attribution reactions as well as the entire conversion process to realize advanced performances.The dual bed conversion and two-stage conversion are the two representative types of fuel conversion technologies developed in recent years based on reaction decoupling.Many technical advantages have been proven for such decoupling fuel conversion technologies,such as poly-generation of products,low-cost production of high-grade products,elimination of undesirable products or pollutants,easy operation and control,and so on.The treated fuels with decoupling conversion technologies mainly include solid biomass and coal,as well as liquid petroleum oil.This paper is devoted to reiteration of the reaction decoupling concept and further to reviewing the research,developments and successful applications of several decoupling fuel conversion technologies of two such types by using fluidized bed as their major reactors.
基金the financial support provide by the National Key Research and Development Program(No.2016YFB0600404-02).
文摘To utilize low rank coal efficiently,a fluidized bed two-stage(FBTS)gasification process,mainly consisting of a FB pyrolyzer and a transport FB(TFB)gasifier,has been proposed for the production of clean fuel gas.To verify the feasibility and technical features of this novel gasification technology,a pilot autothermal platform,with a treating capacity of 100 kg/h for coal,was designed and built up.By adopting a kind of lignite from Inner Mongolia,the running state and fuel gas quality were compared systematically under typical operational conditions.The results show that by keeping the reaction temperatures of pyrolyzer and gasifier at around 840C and 1000C,respectively,the corresponding tar content in fuel gas at the outlets of pyrolyzer and gasifier were 1127 mg/Nm3 and 365 mg/Nm3,reaching a high tar removal efficiency.Under the stable operation state,the volume fractions of CO,H2,CH4 and CO2 in fuel gas were 14.4%,8.3%,3.4%and 11.3%,respectively,and the corresponding higher heating value of fuel gas was about 1100 kcal/Nm3.Compared with the tar from pyrolyzer,the heavy oil fraction in tar from gasifier reduced significantly,while the light oil components increased sharply simultaneously,showing significant effect of catalytic reforming by hot char bed on tar removal.
文摘Tar catalytic removal by char is a promising technology for gasification process because of its porous structure,good catalytic activity,low cost,and easy to treatment after deactivation.To provide comprehensive information on the tar catalytic removal by char,this study focuses on the ongoing efforts and advances from fundamental researches to the industrial applications.The tar removal efficiency by char much depends on reaction conditions and char property,such as char origin,porous structure,the functional group on char surface,carbon structure,and AAEM components.The typical reaction kinetics,reaction mechanism,and the deactivation,will be introduced.Then,for the different gasification processes,the potential or typical applications of tar removal by char are discussed and compared.Finally,a comprehensive analysis and improvement in scaling up,commercializing tar removal technologies and integrating the gasification process,are also evaluated and analyzed in this review.
基金the National Basic Research Program of China(2014CB744303).
文摘This study investigated the characteristics of pyrolysis for waste tire particles in the newly developed fixed-bed reactor with internals that are a central gas collection channel mounted inside reactor.And a few metallic plates vertically welded on the internal wall of the reactors and extending to the region closing their central gas collection pipe walls.Experiments were conducted in two laboratory fixed bed reactors with or without the internals.The results shown that employing internals produced more light oil at externally heating temperatures above 700℃due to the inhibited secondary reactions in the reactor.The oil from the reactor with internals contained more aliphatic hydrocarbons and fewer aromatic hydrocarbons,leading to its higher H/C atomic ratios as for crude petroleum oil.The char yield was relatively stable for two beds and showed the higher heating values(HHVs)of about 23 MJ/kg.The gaseous product of pyrolysis mainly consisted of H2 and CH4,but the use of internals led to less pyrolysis gas through its promotion of oil production.
基金the financial supports of the Ministry of Science and Technology of People’s Republic of China(2018YFE0103400)the National Natural Science Foundation of China(U1908201).
文摘Fuel conversion and clean energy reaction systems involve a variety of catalytic and non-catalytic gas-solid thermochemical reactions.A good understanding of the correct reaction mechanism and kinetics,as well as the profiles of reaction products,is of great significance to the development,design,and operation of such reaction systems.The micro fluidized bed reaction analysis provides an efficient and reliable method to acquire this essential information with low capital and operating costs,low energy consumption and enhanced safety.This paper provides an overview of the system and its characteristics for the micro fluidized bed reaction analyzer that has been well proven to be a reliable new approach as well as an instrument for characterizing various gas-solid thermochemical reactions.