The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to ...The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.展开更多
The shuttle effect of polysulfides is a major challenge for the commercialization of lithium-sulfur battery.The systematic modification of separators has the potential to solve these problems by enhancing the adsorpti...The shuttle effect of polysulfides is a major challenge for the commercialization of lithium-sulfur battery.The systematic modification of separators has the potential to solve these problems by enhancing the adsorption and catalytic conversion of polysulfides.Herein,strong internal electric field bismuth oxycarbonate(Bi_(2)O_(2)CO_(3))nanoflowers decorated conductive carbon(DC+BOC)is proposed to be systematically modified on separator.This intermediate layer not only possesses a strong affinity for polysulfides,but also promotes the conversion of polysulfides and induces the formation of a stable solid electrolyte interphase(SEI)layer,thereby improving the rate performance and cycling stability of the battery.As expected,the modified membrane achieved a high specific capacity of 713 mA h g^(-1) at 5 C.At 1 C,high reversibility of 719 mA h g^(-1) was achieved after 550 cycles with only 0.044%decay per cycle.More importantly,under the sulfur loading of 5.1 mg cm^(-2),the area specific capacity remained at4.1 mA h cm^(-2) after 200 cycles,and the attenuation rate per cycle was only 0,056%.This work provides a new strategy to overcome the shuttle effect of polysulfide,and shows great potential in the application of high-performance lithium-sulfur batteries.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.52072272,52171145 and 22109120)the Zhejiang Provincial Natural Science Foundation of China (LQ21B030002)+1 种基金the Zhejiang Provincial Special Support Program for High-level Talents (2019R52042)the Key programs for Science and Technology Innovation of Wenzhou (ZG2022037)。
文摘The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.
基金financially sponsored by the National Natural Science Foundation of China(51872208 and 52072273)the Zhejiang Provincial Special Support Program for High-level Talents(2019R52042)。
文摘The shuttle effect of polysulfides is a major challenge for the commercialization of lithium-sulfur battery.The systematic modification of separators has the potential to solve these problems by enhancing the adsorption and catalytic conversion of polysulfides.Herein,strong internal electric field bismuth oxycarbonate(Bi_(2)O_(2)CO_(3))nanoflowers decorated conductive carbon(DC+BOC)is proposed to be systematically modified on separator.This intermediate layer not only possesses a strong affinity for polysulfides,but also promotes the conversion of polysulfides and induces the formation of a stable solid electrolyte interphase(SEI)layer,thereby improving the rate performance and cycling stability of the battery.As expected,the modified membrane achieved a high specific capacity of 713 mA h g^(-1) at 5 C.At 1 C,high reversibility of 719 mA h g^(-1) was achieved after 550 cycles with only 0.044%decay per cycle.More importantly,under the sulfur loading of 5.1 mg cm^(-2),the area specific capacity remained at4.1 mA h cm^(-2) after 200 cycles,and the attenuation rate per cycle was only 0,056%.This work provides a new strategy to overcome the shuttle effect of polysulfide,and shows great potential in the application of high-performance lithium-sulfur batteries.