Monolayer transition-metal dichalcogenides (TMDs) are considered to be fantastic building blocks for a wide variety of optical and optoelectronic devices such as sensors, photodetectors, and quantum emitters, owing ...Monolayer transition-metal dichalcogenides (TMDs) are considered to be fantastic building blocks for a wide variety of optical and optoelectronic devices such as sensors, photodetectors, and quantum emitters, owing to their direct band gap, transparency, and mechanical flexibility. The core element of many conventional electronic and optoelectronic devices is the p-n junction, in which the p- and n-types of the semiconductor are formed by chemical doping in different regions. Here, we report a series of optoelectronic studies on a monolayer WSe2 in-plane p-n photodetector, demonstrating a low- power dissipation by showing an ambipolar behavior with a reduced threshold voltage by a factor of two compared with the previous results on a lateral electrostatically doped WSe2 p-n junction. The fabrication of the device is based on a polycarbonates (PC) transfer technique and hence no electron-beam exposure induced damage to the monolayer WSe2 is expected. Upon optical excitation, the photodetector demonstrates a photoresponsivity of 0.12 mA.W-1 and a maximum external quantum efficiency of 0.03%. Our study provides an alternative platform for a flexible and transparent two- dimensional photodetector, from which we expect to further promote the development of next-generation optoelectronic devices.展开更多
Monolayer transition-metal dichalcogenides(TMDs) have attracted a lot of attention for their applications in optics and optoelectronics.Molybdenum disulfide(MoS2),as one of those important materials,has been widel...Monolayer transition-metal dichalcogenides(TMDs) have attracted a lot of attention for their applications in optics and optoelectronics.Molybdenum disulfide(MoS2),as one of those important materials,has been widely investigated due to its direct band gap and photoluminescence(PL) in visible range.Owing to the fact that the monolayer MoS2 suffers low light absorption and emission,surface plasmon polaritons(SPPs) are used to enhance both the excitation and emission efficiencies.Here,we demonstrate that the PL of MoS2 sandwiched between 200-nm-diameter gold nanoparticle(Au NP) and 150-nm-thick gold film is improved by more than 4 times compared with bare MoS2 sample.This study shows that gap plasmons can possess more optical and optoelectronic applications incorporating with many other emerging two-dimensional materials.展开更多
Monolayer transition metal dichalcogenides(TMDs) are widely used for integrated optical and photoelectric devices.Owing to their broken inversion symmetry, monolayer TMDs have a large second-order optical nonlinearity...Monolayer transition metal dichalcogenides(TMDs) are widely used for integrated optical and photoelectric devices.Owing to their broken inversion symmetry, monolayer TMDs have a large second-order optical nonlinearity. However, the optical second-order nonlinear conversion efficiency of monolayer TMDs is still limited by the interaction length. In this work, we theoretically study the second harmonic generation(SHG) from monolayer tungsten sulfide(WS2) enhanced by a silica microsphere cavity. By tuning the position, size, and crystal orientation of the material, second-order nonlinear coupling can occur between the fundamental pump mode and different second harmonic cavity modes, and we obtain an optimal SHG conversion efficiency with orders of magnitude enhancement. Our work demonstrates that the microsphere cavity can significantly enhance SHG from monolayer 2D materials under flexible conditions.展开更多
On-chip bright quantum sources with multiplexing ability are extremely high in demand for integrated quantum networks with unprecedented scalability and complexity.Here,we demonstrate a bright and broadband biphoton q...On-chip bright quantum sources with multiplexing ability are extremely high in demand for integrated quantum networks with unprecedented scalability and complexity.Here,we demonstrate a bright and broadband biphoton quantum source with spectral multiplexing generated in a lithium niobate microresonator system.Without introducing the conventional domain poling,the on-chip microdisk produces photon pairs covering a broad bandwidth promised by natural phase matching in spontaneous parametric down conversion.Experimentally,the multiplexed photon pairs are characterized by 30 nm bandwidth limited by the filtering system,providing over 40 multiplexing channels with a 0.8 nm channel spacing.Meanwhile,the generation rate reaches 5.13 MHz/μW with a coincidence-to-accidental ratio up to 804,and the quantum source manifests a high purity with a heralded single photon correlation g^((2))_(H)(0)=0.0098±0.0021.Furthermore,the energy-time entanglement is demonstrated with an excellent interference visibility of 96.5%±2%.Such a quantum source at the telecommunication band paves the way for high-dimensional entanglement and future integrated quantum information systems.展开更多
The quantum Toffoli gate is one of the most important three-qubit gates,but it is challenging to construct a chip according to the complicated traditional circuit.Using the optimized 3D configuration with an overpass ...The quantum Toffoli gate is one of the most important three-qubit gates,but it is challenging to construct a chip according to the complicated traditional circuit.Using the optimized 3D configuration with an overpass waveguide to reduce the circuit complexity,we successfully fabricate an on-chip path encoded photonic quantum Toffoli gate enabled by the 3D capability of the femtosecond laser direct writing(FLDW)for the first time to our knowledge,whose truth-table fidelity is higher than 85.5%.Furthermore,a path encoded four-qubit controlled-controlled-controlled NOT gate is written to confirm the scalability of this resource-saving technique.This work paves the way for the FLDW of more complex and powerful photonic quantum computation chips.展开更多
Multiphoton quantum states play a critical role in emerging quantum technologies and greatly improve our fundamental understanding of the quantum world.Integrated photonics is well recognized as an attractive technolo...Multiphoton quantum states play a critical role in emerging quantum technologies and greatly improve our fundamental understanding of the quantum world.Integrated photonics is well recognized as an attractive technology offering great promise for the generation of photonic quantum states with high-brightness,tunability,stability,and scalability.Herein,we demonstrate the generation of multiphoton quantum states using a single-silicon nanophotonic waveguide.The detected four-photon rate reaches 0.34 Hz even with a low-pump power of 600μW.This multiphoton quantum state is also qualified with multiphoton quantum interference,as well as quantum state tomography.For the generated four-photon states,the quantum interference visibilities are greater than 95%,and the fidelity is 0.78±0.02.Furthermore,such a multiphoton quantum source is fully compatible with the on-chip processes of quantum manipulation,as well as quantum detection,which is helpful for the realization of large-scale quantum photonic integrated circuits(QPICs)and shows great potential for research in the area of multiphoton quantum science.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0301700)the National Natural Science Foundation of China(Grant Nos.61590932,11774333,61674132,11674300,11575172,and 11625419)+2 种基金the Anhui Provincial Initiative in Quantum Information Technologies,China(Grant Nos.AHY080000 and AHY130300)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB24030601)the Fundamental Research Funds for the Central Universities,China
文摘Monolayer transition-metal dichalcogenides (TMDs) are considered to be fantastic building blocks for a wide variety of optical and optoelectronic devices such as sensors, photodetectors, and quantum emitters, owing to their direct band gap, transparency, and mechanical flexibility. The core element of many conventional electronic and optoelectronic devices is the p-n junction, in which the p- and n-types of the semiconductor are formed by chemical doping in different regions. Here, we report a series of optoelectronic studies on a monolayer WSe2 in-plane p-n photodetector, demonstrating a low- power dissipation by showing an ambipolar behavior with a reduced threshold voltage by a factor of two compared with the previous results on a lateral electrostatically doped WSe2 p-n junction. The fabrication of the device is based on a polycarbonates (PC) transfer technique and hence no electron-beam exposure induced damage to the monolayer WSe2 is expected. Upon optical excitation, the photodetector demonstrates a photoresponsivity of 0.12 mA.W-1 and a maximum external quantum efficiency of 0.03%. Our study provides an alternative platform for a flexible and transparent two- dimensional photodetector, from which we expect to further promote the development of next-generation optoelectronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61590932 and 11774333)the Anhui Initiative Project in Quantum Information Technologies,China(Grant No.AHY130300)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB24030600)the National Key Research and Development Program of China(Grant No.2016YFA0301700)the Fundamental Research Funds for the Central Universities,China
文摘Monolayer transition-metal dichalcogenides(TMDs) have attracted a lot of attention for their applications in optics and optoelectronics.Molybdenum disulfide(MoS2),as one of those important materials,has been widely investigated due to its direct band gap and photoluminescence(PL) in visible range.Owing to the fact that the monolayer MoS2 suffers low light absorption and emission,surface plasmon polaritons(SPPs) are used to enhance both the excitation and emission efficiencies.Here,we demonstrate that the PL of MoS2 sandwiched between 200-nm-diameter gold nanoparticle(Au NP) and 150-nm-thick gold film is improved by more than 4 times compared with bare MoS2 sample.This study shows that gap plasmons can possess more optical and optoelectronic applications incorporating with many other emerging two-dimensional materials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11774333 and 62061160487)the Fundamental Research Funds for the Central Universities。
文摘Monolayer transition metal dichalcogenides(TMDs) are widely used for integrated optical and photoelectric devices.Owing to their broken inversion symmetry, monolayer TMDs have a large second-order optical nonlinearity. However, the optical second-order nonlinear conversion efficiency of monolayer TMDs is still limited by the interaction length. In this work, we theoretically study the second harmonic generation(SHG) from monolayer tungsten sulfide(WS2) enhanced by a silica microsphere cavity. By tuning the position, size, and crystal orientation of the material, second-order nonlinear coupling can occur between the fundamental pump mode and different second harmonic cavity modes, and we obtain an optimal SHG conversion efficiency with orders of magnitude enhancement. Our work demonstrates that the microsphere cavity can significantly enhance SHG from monolayer 2D materials under flexible conditions.
基金supported by the National Key R&D Program of China(Grant Nos.2016YFA0301302,and 2016YFA0301700)National Natural Science Foundation of China(Grant Nos.11825402,61590932,11774333,62061160487,12004373,11734009,and 11874375)+4 种基金Anhui Initiative in Quantum Information Technologies(Grant No.AHY130300)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB24030601)Beijing Academy of Quantum Information Sciences(Grant No.Y18G20)Fundamental Research Funds for the Central Universitiespartially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication。
文摘On-chip bright quantum sources with multiplexing ability are extremely high in demand for integrated quantum networks with unprecedented scalability and complexity.Here,we demonstrate a bright and broadband biphoton quantum source with spectral multiplexing generated in a lithium niobate microresonator system.Without introducing the conventional domain poling,the on-chip microdisk produces photon pairs covering a broad bandwidth promised by natural phase matching in spontaneous parametric down conversion.Experimentally,the multiplexed photon pairs are characterized by 30 nm bandwidth limited by the filtering system,providing over 40 multiplexing channels with a 0.8 nm channel spacing.Meanwhile,the generation rate reaches 5.13 MHz/μW with a coincidence-to-accidental ratio up to 804,and the quantum source manifests a high purity with a heralded single photon correlation g^((2))_(H)(0)=0.0098±0.0021.Furthermore,the energy-time entanglement is demonstrated with an excellent interference visibility of 96.5%±2%.Such a quantum source at the telecommunication band paves the way for high-dimensional entanglement and future integrated quantum information systems.
基金National Key Research and Development Program of China(2018YFB1107205,2016YFA0301302)National Natural Science Foundation of China(12134001,61590933,61590932,11527901,11774333,62061160487)+2 种基金Joint Fund for Equipment Pre-research Space Science and Technology(6141B06140601)Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(XDB24030601)Fundamental Research Funds for the Central Universities。
文摘The quantum Toffoli gate is one of the most important three-qubit gates,but it is challenging to construct a chip according to the complicated traditional circuit.Using the optimized 3D configuration with an overpass waveguide to reduce the circuit complexity,we successfully fabricate an on-chip path encoded photonic quantum Toffoli gate enabled by the 3D capability of the femtosecond laser direct writing(FLDW)for the first time to our knowledge,whose truth-table fidelity is higher than 85.5%.Furthermore,a path encoded four-qubit controlled-controlled-controlled NOT gate is written to confirm the scalability of this resource-saving technique.This work paves the way for the FLDW of more complex and powerful photonic quantum computation chips.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.61590932,11774333,and 61431166001)the National Science Fund for Distinguished Young Scholars(61725503)+4 种基金the Anhui Initiative in Quantum Information Technologies(No.AHY130300)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB24030601)the National Key R&D Program(No.2016YFA0301700)the Zhejiang Provincial Natural Science Foundation of China(LZ18F050001)the Fundamental Research Funds for the Central Universities.
文摘Multiphoton quantum states play a critical role in emerging quantum technologies and greatly improve our fundamental understanding of the quantum world.Integrated photonics is well recognized as an attractive technology offering great promise for the generation of photonic quantum states with high-brightness,tunability,stability,and scalability.Herein,we demonstrate the generation of multiphoton quantum states using a single-silicon nanophotonic waveguide.The detected four-photon rate reaches 0.34 Hz even with a low-pump power of 600μW.This multiphoton quantum state is also qualified with multiphoton quantum interference,as well as quantum state tomography.For the generated four-photon states,the quantum interference visibilities are greater than 95%,and the fidelity is 0.78±0.02.Furthermore,such a multiphoton quantum source is fully compatible with the on-chip processes of quantum manipulation,as well as quantum detection,which is helpful for the realization of large-scale quantum photonic integrated circuits(QPICs)and shows great potential for research in the area of multiphoton quantum science.