期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Growth behavior and resource potential evaluation of gas hydrate in core fractures in Qilian Mountain permafrost area, Qinghai-Tibet Plateau 被引量:1
1
作者 Qing-guo Meng Chang-ling Liu +5 位作者 Zhen-quan Lu xi-luo hao Cheng-feng Li Qing-tao Bu Yun-kai Ji Jia-xian Wang 《China Geology》 CAS CSCD 2023年第2期208-215,共8页
The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.U... The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area. 展开更多
关键词 Gas hydrate Growth behavior Core fracture Rock Quality Designation Resource potential evaluation Engineering Oil and gas exploration Qilian Mountain permafrost area Qinghai-Tibet Plateau
下载PDF
Experimental simulations and methods for natural gas hydrate analysis in China 被引量:18
2
作者 Neng-you Wu Chang-ling Liu xi-luo hao 《China Geology》 2018年第1期61-71,共11页
This paper provides an overview of the developments in analytical and testing methods and experimental simulations on gas hydrate in China.In the laboratory,the analyses and experiments of gas hydrate can provide usef... This paper provides an overview of the developments in analytical and testing methods and experimental simulations on gas hydrate in China.In the laboratory,the analyses and experiments of gas hydrate can provide useful parameters for hydrate exploration and exploitation.In recent years,modem analytical instruments and techniques,including Laser Raman spectroscopy (Raman),X-ray diffraction (XRD),X-ray computed tomography (X-CT),scanning electron microscope (SEM),nuclear magnetic resonance (NMR) and high pressure differential scanning calorimetry (DSC),were applied in the study of structure,formation mechanisms,phase equilibrium,thermal physical properties and so forth of gas hydrates.The detection technology and time-domain reflectometry (TDR)technique are integrated to the experimental devices to study the physical parameters of gas hydrates,such as the acoustics,resistivity,thermal,and mechanical properties.It is believed that the various analytical techniques together with the experimental simulations from large-scale to micro-scale on gas hydrate will play a significant role and provide a powerful support for future gas hydrate researches. 展开更多
关键词 GAS HYDRATE ANALYTICAL method Expermaental simulation Detection TECHNIQUE
下载PDF
Molecular simulation studies on natural gas hydrates nucleation and growth:A review 被引量:2
3
作者 Zheng-cai Zhang Neng-you Wu +7 位作者 Chang-ling Liu xi-luo hao Yong-chao Zhang Kai Gao Bo Peng Chao Zheng Wei Tang Guang-jun Guo 《China Geology》 2022年第2期330-344,共15页
How natural gas hydrates nucleate and grow is a crucial scientific question.The research on it will help solve practical problems encountered in hydrate accumulation,development,and utilization of hydrate related tech... How natural gas hydrates nucleate and grow is a crucial scientific question.The research on it will help solve practical problems encountered in hydrate accumulation,development,and utilization of hydrate related technology.Due to its limitations on both spatial and temporal dimensions,experiment cannot fully explain this issue on a micro-scale.With the development of computer technology,molecular simulation has been widely used in the study of hydrate formation because it can observe the nucleation and growth process of hydrates at the molecular level.This review will assess the recent progresses in molecular dynamics simulation of hydrate nucleation and growth,as well as the enlightening significance of these developments in hydrate applications.At the same time,combined with the problems encountered in recent hydrate trial mining and applications,some potential directions for molecular simulation in the research of hydrate nucleation and growth are proposed,and the future of molecular simulation research on hydrate nucleation and growth is prospected. 展开更多
关键词 Natural gas hydrates Methane hydrate Molecular simulations Hydrate nucleation Hydrate growth Hydrate formation Nucleation theory NGHs exploration trial engineering Oil and gas exploration engineering
下载PDF
Discovery of supercritical carbon dioxide in a hydrothermal system 被引量:11
4
作者 Xin Zhang Lian-Fu Li +8 位作者 Zeng-Feng Du xi-luo hao Lei Cao Zhen-Dong Luan Bing Wang Shi-Chuan Xi Chao Lian Jun Yan Wei-Dong Sun 《Science Bulletin》 SCIE EI CAS CSCD 2020年第11期958-964,M0004,共8页
Supercritical CO2appearing as bubbles in hydrothermal vents was identified in the south part of the Okinawa Trough using in situ Raman spectroscopy. Significantly, the N2peak in supercritical CO2is much larger than th... Supercritical CO2appearing as bubbles in hydrothermal vents was identified in the south part of the Okinawa Trough using in situ Raman spectroscopy. Significantly, the N2peak in supercritical CO2is much larger than those in seawater and vent fluids, indicating that supercritical CO2enriches N2from the surrounding environment. Considering that the partial pressures of CO2and N2in the Earth’s protoatmosphere were 10–20 MPa, supercritical CO2with high N2was likely the dominant CO2phase near the water-air interface in the early history of the Earth, which promoted the synthesis, pre-enrichment and preservation of amino acids and other organic matters that are essential to the origin of life. 展开更多
关键词 In situ Supercritical CO2 Origin of life Amino acid Hydrothermal vents Raman spectrum
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部