期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Contour detection in Cassini ISS images based on Hierarchical Extreme Learning Machine and Dense Conditional Random Field
1
作者 xi-qi yang Qing-Feng Zhang Zhan Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2020年第1期83-92,共10页
In Cassini ISS(Imaging Science Subsystem)images,contour detection is often performed on disk-resolved objects to accurately locate their center.Thus,contour detection is a key problem.Traditional edge detection method... In Cassini ISS(Imaging Science Subsystem)images,contour detection is often performed on disk-resolved objects to accurately locate their center.Thus,contour detection is a key problem.Traditional edge detection methods,such as Canny and Roberts,often extract the contour with too much interior details and noise.Although the deep convolutional neural network has been applied successfully in many image tasks,such as classification and object detection,it needs more time and computer resources.In this paper,a contour detection algorithm based on H-ELM(Hierarchical Extreme Learning Machine)and Dense CRF(Dense Conditional Random Field)is proposed for Cassini ISS images.The experimental results show that this algorithm’s performance is better than both traditional machine learning methods,such as Support Vector Machine,Extreme Learning Machine and even deep Convolutional Neural Network.The extracted contour is closer to the actual contour.Moreover,it can be trained and tested quickly on the general configuration of PC,and thus can be applied to contour detection for Cassini ISS images. 展开更多
关键词 techniques:image processing methods:data analysis ASTROMETRY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部