The fatigue cracking behavior of ultra-high strength steels containing rectangular inclusions of small sizes were investigated based on in situ observations by scanning electron microscopy (SEM). The size and shape ...The fatigue cracking behavior of ultra-high strength steels containing rectangular inclusions of small sizes were investigated based on in situ observations by scanning electron microscopy (SEM). The size and shape of rectangular inclusions affect markedly the initiation site and propagation path of a fatigue crack. Especially, the initiation site of a fatigue crack depends strongly on the angle between the long-axis of a rectangle inclusion and the loading direction, and the length/width ratio of this rectangle inclusion because the residual stress distribution fields vary with these conditions. The results coincide very well with those of finite element analysis.展开更多
In the present study, creep activation energy for rupture was obtained as 221-348 kJ/mol for 22Cr15Ni3.5 CuNbN due to the precipitation-hardening mechanism. The extrapolation strength of creep rupture time of 10~5 h a...In the present study, creep activation energy for rupture was obtained as 221-348 kJ/mol for 22Cr15Ni3.5 CuNbN due to the precipitation-hardening mechanism. The extrapolation strength of creep rupture time of 10~5 h at 923 K for22 Cr15 Ni3.5 CuNbN is more valid(83.71 MPa) predicted by the Manson-Haferd method, which is superior to other commercial heat-resistant steels. The tensile creep tests ranging from 180 to 240 MPa at 923 K were conducted to investigate creep deformation behavior of welded joint between a novel heat-resistant austenite steel 22Cr15Ni3.5 CuNbN and ERNiCrCoMo-1 weld metal. Apparent stress exponent value of 6.54 was obtained, which indicated that the ratecontrolled creep occurred in weldment during creep. A damage tolerance factor of 6.4 in the weldment illustrates that the microstructural degradation is the dominant creep damaging mechanism in the alloy. Meanwhile, the welded joints perform two types of deformation behavior with the variation in applied stress, which resulted from the different parts that govern the creep processing. Also, the morphology evolution of the fracture surfaces confirms the effects of stress level and stress state.展开更多
文摘The fatigue cracking behavior of ultra-high strength steels containing rectangular inclusions of small sizes were investigated based on in situ observations by scanning electron microscopy (SEM). The size and shape of rectangular inclusions affect markedly the initiation site and propagation path of a fatigue crack. Especially, the initiation site of a fatigue crack depends strongly on the angle between the long-axis of a rectangle inclusion and the loading direction, and the length/width ratio of this rectangle inclusion because the residual stress distribution fields vary with these conditions. The results coincide very well with those of finite element analysis.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51475326)the Demonstration Project of National Marine Economic Innovation (No. BHSF2017-22)
文摘In the present study, creep activation energy for rupture was obtained as 221-348 kJ/mol for 22Cr15Ni3.5 CuNbN due to the precipitation-hardening mechanism. The extrapolation strength of creep rupture time of 10~5 h at 923 K for22 Cr15 Ni3.5 CuNbN is more valid(83.71 MPa) predicted by the Manson-Haferd method, which is superior to other commercial heat-resistant steels. The tensile creep tests ranging from 180 to 240 MPa at 923 K were conducted to investigate creep deformation behavior of welded joint between a novel heat-resistant austenite steel 22Cr15Ni3.5 CuNbN and ERNiCrCoMo-1 weld metal. Apparent stress exponent value of 6.54 was obtained, which indicated that the ratecontrolled creep occurred in weldment during creep. A damage tolerance factor of 6.4 in the weldment illustrates that the microstructural degradation is the dominant creep damaging mechanism in the alloy. Meanwhile, the welded joints perform two types of deformation behavior with the variation in applied stress, which resulted from the different parts that govern the creep processing. Also, the morphology evolution of the fracture surfaces confirms the effects of stress level and stress state.