Bismuth(Bi),as an alloy-based anode material,has attracted much atte ntion in the developme nt of sodiumion hybrid capacitors(SIHCs)due to its high theoretical capacity.However,the volume expansion of the Bi-based ano...Bismuth(Bi),as an alloy-based anode material,has attracted much atte ntion in the developme nt of sodiumion hybrid capacitors(SIHCs)due to its high theoretical capacity.However,the volume expansion of the Bi-based anode during the sodiation/desodiation process results in limited rate capability.In the present work,a porous Bi-based composite was constructed by a one-step hydrothermal method,and Bi was encapsulated in ligninderived nitrogen-doped porous carbon(Bi@LNPC)after carbonization.The obtained Bi nanoparticles could effectively adapt to the strain and shorten the diffusion distance of Na^(+).In addition,porous carbon skeleton provides a rigid conductive network for electronic transportation.Therefore,the assembled sodium-ion half-cell with Bi@LNPC anode shows ultra-high-rate capability.When the current density was enhanced from 0.1 to 50 A·g^(-1),the specific capacity decreased slightly from 351.5 to 342.8 mAh·g^(-1).Even at an extremely high current density of 200 A·g^(-1),it retains 81.3%capacity retention when compared to a current density of 1 A·g^(-1).The SIHCs assembled by Bi@LNPC show a high energy density of 63 Wh·kg^(-1).This work provides an effective method for developing high-rate Bi anode materials for sodium-ion hybrid capacitors(SIHCs)and sodium-ion batteries(SIBs).展开更多
In this paper, microphase behavior of an ABC triblock copolymer, polystyrene-block-poly(2-vinylpyridine)-block- poly(ethylene oxide), namely PS-b-P2VP-b-PEO, was systematically studied during spin-coating and solv...In this paper, microphase behavior of an ABC triblock copolymer, polystyrene-block-poly(2-vinylpyridine)-block- poly(ethylene oxide), namely PS-b-P2VP-b-PEO, was systematically studied during spin-coating and solvent vapor annealing based on various parameters, including the types of the solvent, spin speed and thickness. The morphological features and the microdomain location of the different blocks were characterized by atomic force microscope (AFM) and high resolution transmission electron microscopy (HRTEM). With increasing thickness, the order-order transition from nanopores array to the pattern of nanostripes was observed due to microdomain coarsening. These processes of pattern transformation were based on the selectivity of toluene for different blocks and on the contact time between solvent molecules and the three blocks. This work provides different templates for preparation of gold nanoparticle array on silicon wafer, which can be adopted as an active surface-enhanced Raman scattering (SERS) substrate for poly(3-hexylthiophene) (P3HT).展开更多
A new substrate,aligned Ag nanowires decorated with silver nanoparticle composite structure(AgNWs@AgNPs),was fabricated to investigate metalenhanced fluorescence(MEF) and its mechanism.The new composite structure was ...A new substrate,aligned Ag nanowires decorated with silver nanoparticle composite structure(AgNWs@AgNPs),was fabricated to investigate metalenhanced fluorescence(MEF) and its mechanism.The new composite structure was fabricated via a three-phase interface assembly method followed by SnCl2 sensitization and AgNO3 reduction process.The size and distribution of the nanoparticles on silver nanowires increased with the sensitization and reduction cycles.The formation of AgNPs on the surfaces of AgNWs was confirmed by multiple characterization methods including scanning electron microscopy(SEM),transmission electron microscope(TEM),atomic force microscopy(AFM) and X-ray diffraction(XRD).The results show that the fluorescence intensity of the poly(3-hexylthiophene)(P3HT) on the composite structure was greatly enhanced compared with that on bare glass substrate,and the intensity increased with the increase in particle sizes and density.The mechanism was basedo n the increase in excitation rate and the radiation decay rate.The new type of substrate could serve as a good and efficient MEF substrate for high-performance fluorescence-based devices.展开更多
In this study, well-ordered gold nanoparticle array on silicon substrate was adopted as an active surface-enhanced Raman scattering substrate for detecting rhodamine B (RB), and the influence of RB morphologies on s...In this study, well-ordered gold nanoparticle array on silicon substrate was adopted as an active surface-enhanced Raman scattering substrate for detecting rhodamine B (RB), and the influence of RB morphologies on surface-enhanced Raman scattering (SERS) properties was discussed. The Au nanoparticle array was prepared by using patterned P4VP nanodomains of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) diblock copolymer thin films as nanoreactors which is a simple and economical approach. The results show that Raman spectra of RB on the Au nanopaticle array have much stronger intensity than those on the bare silicon substrate by detecting same RB solution. It indicates that the prepared Au nanoparticle array on silicon substrate has a significant Raman enhancement for RB. Interestingly, the Raman intensity of RB from its ethanol solution is much stronger than that from its aqueous solution due to the special morphologies of RB formed in their ethanol solutions. This work provides an effective approach to prepare highly sensitive and stable surface-enhanced Raman scattering substrate.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22108044)the Research and Development Program in Key Fields of Guangdong Province(No.2020B1111380002)+1 种基金the Basic Research and Applicable Basic Research in Guangzhou City(No.202201010290)the financial support from the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery(No.2021GDKLPRB07)。
文摘Bismuth(Bi),as an alloy-based anode material,has attracted much atte ntion in the developme nt of sodiumion hybrid capacitors(SIHCs)due to its high theoretical capacity.However,the volume expansion of the Bi-based anode during the sodiation/desodiation process results in limited rate capability.In the present work,a porous Bi-based composite was constructed by a one-step hydrothermal method,and Bi was encapsulated in ligninderived nitrogen-doped porous carbon(Bi@LNPC)after carbonization.The obtained Bi nanoparticles could effectively adapt to the strain and shorten the diffusion distance of Na^(+).In addition,porous carbon skeleton provides a rigid conductive network for electronic transportation.Therefore,the assembled sodium-ion half-cell with Bi@LNPC anode shows ultra-high-rate capability.When the current density was enhanced from 0.1 to 50 A·g^(-1),the specific capacity decreased slightly from 351.5 to 342.8 mAh·g^(-1).Even at an extremely high current density of 200 A·g^(-1),it retains 81.3%capacity retention when compared to a current density of 1 A·g^(-1).The SIHCs assembled by Bi@LNPC show a high energy density of 63 Wh·kg^(-1).This work provides an effective method for developing high-rate Bi anode materials for sodium-ion hybrid capacitors(SIHCs)and sodium-ion batteries(SIBs).
基金supported by the National Natural Science Foundation of China(Nos.51273048 and 51203025)Natural Science Foundation of Guangdong Province(No.S2012040007725)
文摘In this paper, microphase behavior of an ABC triblock copolymer, polystyrene-block-poly(2-vinylpyridine)-block- poly(ethylene oxide), namely PS-b-P2VP-b-PEO, was systematically studied during spin-coating and solvent vapor annealing based on various parameters, including the types of the solvent, spin speed and thickness. The morphological features and the microdomain location of the different blocks were characterized by atomic force microscope (AFM) and high resolution transmission electron microscopy (HRTEM). With increasing thickness, the order-order transition from nanopores array to the pattern of nanostripes was observed due to microdomain coarsening. These processes of pattern transformation were based on the selectivity of toluene for different blocks and on the contact time between solvent molecules and the three blocks. This work provides different templates for preparation of gold nanoparticle array on silicon wafer, which can be adopted as an active surface-enhanced Raman scattering (SERS) substrate for poly(3-hexylthiophene) (P3HT).
基金financially supported by the National Natural Science Foundation of China (No.51273048)Science and Technology Planning Project of Guangdong Province (No.2017B090915004)the Open Operation of Guangdong Provincial Key Laboratory of Advanced Coatings Research and Development (No.2017B030314105)
文摘A new substrate,aligned Ag nanowires decorated with silver nanoparticle composite structure(AgNWs@AgNPs),was fabricated to investigate metalenhanced fluorescence(MEF) and its mechanism.The new composite structure was fabricated via a three-phase interface assembly method followed by SnCl2 sensitization and AgNO3 reduction process.The size and distribution of the nanoparticles on silver nanowires increased with the sensitization and reduction cycles.The formation of AgNPs on the surfaces of AgNWs was confirmed by multiple characterization methods including scanning electron microscopy(SEM),transmission electron microscope(TEM),atomic force microscopy(AFM) and X-ray diffraction(XRD).The results show that the fluorescence intensity of the poly(3-hexylthiophene)(P3HT) on the composite structure was greatly enhanced compared with that on bare glass substrate,and the intensity increased with the increase in particle sizes and density.The mechanism was basedo n the increase in excitation rate and the radiation decay rate.The new type of substrate could serve as a good and efficient MEF substrate for high-performance fluorescence-based devices.
基金financially supported by the National Natural Science Foundation of China(Nos.51203025,51273048 and 51203191)
文摘In this study, well-ordered gold nanoparticle array on silicon substrate was adopted as an active surface-enhanced Raman scattering substrate for detecting rhodamine B (RB), and the influence of RB morphologies on surface-enhanced Raman scattering (SERS) properties was discussed. The Au nanoparticle array was prepared by using patterned P4VP nanodomains of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) diblock copolymer thin films as nanoreactors which is a simple and economical approach. The results show that Raman spectra of RB on the Au nanopaticle array have much stronger intensity than those on the bare silicon substrate by detecting same RB solution. It indicates that the prepared Au nanoparticle array on silicon substrate has a significant Raman enhancement for RB. Interestingly, the Raman intensity of RB from its ethanol solution is much stronger than that from its aqueous solution due to the special morphologies of RB formed in their ethanol solutions. This work provides an effective approach to prepare highly sensitive and stable surface-enhanced Raman scattering substrate.