An acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction (MAT-MI) is pro- posed, based on the analyses of one-dimensional tissue vibration, three-dimensional acoustic dipole radiatio...An acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction (MAT-MI) is pro- posed, based on the analyses of one-dimensional tissue vibration, three-dimensional acoustic dipole radiation and acoustic waveform detection with a planar piston transducer. The collected waveforms provide information about the conductiv- ity boundaries in various vibration intensities and phases due to the acoustic dipole radiation pattern. Combined with the simplified back projection algorithm, the conductivity configuration of the measured layer in terms of shape and size can be reconstructed with obvious border stripes. The numerical simulation is performed for a two-layer cylindrical phantom model and it is also verified by the experimental results of MAT-MI for a tissue-like sample phantom. The proposed model suggests a potential application of conductivity differentiation and provides a universal basis for the further study of conductivity reconstruction for MAT-MI.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB707900), the National Natural Science Foundation of China (Grant No. 10974098), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2009407), and the Specialized Research Fund for Doctoral Program of High Education of China (Grant No. 20093207120003).
文摘An acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction (MAT-MI) is pro- posed, based on the analyses of one-dimensional tissue vibration, three-dimensional acoustic dipole radiation and acoustic waveform detection with a planar piston transducer. The collected waveforms provide information about the conductiv- ity boundaries in various vibration intensities and phases due to the acoustic dipole radiation pattern. Combined with the simplified back projection algorithm, the conductivity configuration of the measured layer in terms of shape and size can be reconstructed with obvious border stripes. The numerical simulation is performed for a two-layer cylindrical phantom model and it is also verified by the experimental results of MAT-MI for a tissue-like sample phantom. The proposed model suggests a potential application of conductivity differentiation and provides a universal basis for the further study of conductivity reconstruction for MAT-MI.