In order to improve the ability of ozone to catalyze the degradation of phenolic pollutants in wastewater,the CuO/Al2O3 catalysts was prepared by the impregnation precipitation method and an ozone catalytic oxidation ...In order to improve the ability of ozone to catalyze the degradation of phenolic pollutants in wastewater,the CuO/Al2O3 catalysts was prepared by the impregnation precipitation method and an ozone catalytic oxidation system was constructed.The actual phenolic sewage was used as the treatment object.And the reaction conditions of the system were optimized,and the treatment effect was determined,while the non-catalytic system was used as a control group.At the same time,the influence of salt and ammonia nitrogen related water quality on the system was studied.The optimal reaction conditions for the treatment of phenolic wastewater covered:a catalyst dosage of 30 g/L,an ozone flow rate of 0.3 m3/h,a pH value of 8.80,and a reaction time of 15 minutes.Under these conditions,the phenol and COD removal rates of the system reached 98.7%and 49.4%,respectively,which were by 31.3 percentage points and 16.2 percentage points higher than that of the ozonation system alone.The salt and ammonia nitrogen in the sewage can reduce the oxidation effect of the system.When the salinity reached 10%and the ammonia nitrogen content reached 13 000 mg/L,the removal rate of phenol could be reduced by about 20%.The results of this paper have a reference value for phenol wastewater treatment engineering.展开更多
基金financially supported by the Ministry of Science and Technology of the People’s Republic of China [Grant No. 2017YFC1404605]
文摘In order to improve the ability of ozone to catalyze the degradation of phenolic pollutants in wastewater,the CuO/Al2O3 catalysts was prepared by the impregnation precipitation method and an ozone catalytic oxidation system was constructed.The actual phenolic sewage was used as the treatment object.And the reaction conditions of the system were optimized,and the treatment effect was determined,while the non-catalytic system was used as a control group.At the same time,the influence of salt and ammonia nitrogen related water quality on the system was studied.The optimal reaction conditions for the treatment of phenolic wastewater covered:a catalyst dosage of 30 g/L,an ozone flow rate of 0.3 m3/h,a pH value of 8.80,and a reaction time of 15 minutes.Under these conditions,the phenol and COD removal rates of the system reached 98.7%and 49.4%,respectively,which were by 31.3 percentage points and 16.2 percentage points higher than that of the ozonation system alone.The salt and ammonia nitrogen in the sewage can reduce the oxidation effect of the system.When the salinity reached 10%and the ammonia nitrogen content reached 13 000 mg/L,the removal rate of phenol could be reduced by about 20%.The results of this paper have a reference value for phenol wastewater treatment engineering.