Phlogopite-amphibole pyroxenite xenoliths contained in an Early Palaeozoic alkali subvolcanic lamprophyre complex in Langao County, Shaanxi Province, are metasomatized mantle xenoliths, composed mainly of clinopyroxen...Phlogopite-amphibole pyroxenite xenoliths contained in an Early Palaeozoic alkali subvolcanic lamprophyre complex in Langao County, Shaanxi Province, are metasomatized mantle xenoliths, composed mainly of clinopyroxene, amphibole, phlogopite, apatite, pervoskite, ilmenite and sphene with well-developed subsolidus metamorphism-deformation textures, such as “triple points” and “cataclastic boundaries”. Minerological studies indicate that clinopyroxene is rich in SiO2 and MgO and poor in TiO2 and Al2O3, which is notably different from magmatogenic deep-seated megacrysts and phenocrysts formed in the range of mantle pressure. Amphibole and phlogopite have the compositional feature of mantle-derived amphibole and phlogopite. Sm-Nd isotope studies suggest that the metasomatized mantle beneath Langao County is the product of metasomatism of primitive mantle by melt (fluid) derived from the mantle plume, and the mantle metasomatism occurred 650 Ma ago. The process of mantle metasomatism changed from mantle metasomatism induced by CO2-, H2O- and CH4-rich fluid in the early stage to that induced by melt and P-, Ti-, Ca- and Fe-rich fluid in the late stage.展开更多
This paper presents a direct study of the fluids and melts in the upper mantle by examining the fluid inclusions, melt inclusions and glasses trapped in the mantle lherzolite xenoliths entrained by Cenozoic alkali bas...This paper presents a direct study of the fluids and melts in the upper mantle by examining the fluid inclusions, melt inclusions and glasses trapped in the mantle lherzolite xenoliths entrained by Cenozoic alkali basalts (basanite, olivine-nephelinite and alkali-olivine basalt) from eastern China. The study indicates that the volatile components, which are dissolved in high-pressure solid mineral phases of mantle peridotite at depths, may be exsolved under decompressive conditions of mantle plume upwelling to produce the initial free fluid phases in the upper mantle. The free fluid phases migrating in the upper mantle may result in lowering of the mantle solidus (and liquidus), thereby initiating partial melting of the upper mantle, and in the meantime, producing metasomatic effects on the latter.展开更多
Studies of the mantle-derived iherzolites from Nushan show that in addition to CO2,there were present H2O and small amounts of CO, CH4, SO2,Cl and F in the initial mantlc fluids derived fron the asthenospheric mantlc ...Studies of the mantle-derived iherzolites from Nushan show that in addition to CO2,there were present H2O and small amounts of CO, CH4, SO2,Cl and F in the initial mantlc fluids derived fron the asthenospheric mantlc plumc .The imitial fluids accumulated in some regions of the mantle, resulting in lowering of the mantle solidus (and liquidus) and partial melting of the upper mantle. Melts formed from low-degree of fluid-involved partial melting of the upper mantle would be highly enriched in incompatible elements.Fluies and melts are allthe metasomatic agents for mantle metasomatism, and the interaction between them and the depleted mantle could result in the substan-tial local enrichment of LREE and incompatible elements in the latter.In case that the concentration of H2O in the fluids (and melts) is lower ,only cryptic metasomatism would occur, in case that the concentration of H2O is higher,the degree of partial melting would be higher and hydrous metasomatic phases(e.g. amphiboles )would nucleate. Under such circumstances, there would occur model metasomatism.展开更多
文摘Phlogopite-amphibole pyroxenite xenoliths contained in an Early Palaeozoic alkali subvolcanic lamprophyre complex in Langao County, Shaanxi Province, are metasomatized mantle xenoliths, composed mainly of clinopyroxene, amphibole, phlogopite, apatite, pervoskite, ilmenite and sphene with well-developed subsolidus metamorphism-deformation textures, such as “triple points” and “cataclastic boundaries”. Minerological studies indicate that clinopyroxene is rich in SiO2 and MgO and poor in TiO2 and Al2O3, which is notably different from magmatogenic deep-seated megacrysts and phenocrysts formed in the range of mantle pressure. Amphibole and phlogopite have the compositional feature of mantle-derived amphibole and phlogopite. Sm-Nd isotope studies suggest that the metasomatized mantle beneath Langao County is the product of metasomatism of primitive mantle by melt (fluid) derived from the mantle plume, and the mantle metasomatism occurred 650 Ma ago. The process of mantle metasomatism changed from mantle metasomatism induced by CO2-, H2O- and CH4-rich fluid in the early stage to that induced by melt and P-, Ti-, Ca- and Fe-rich fluid in the late stage.
基金supported by the National NaturalScience Foundation of China(Grant 4913390).
文摘This paper presents a direct study of the fluids and melts in the upper mantle by examining the fluid inclusions, melt inclusions and glasses trapped in the mantle lherzolite xenoliths entrained by Cenozoic alkali basalts (basanite, olivine-nephelinite and alkali-olivine basalt) from eastern China. The study indicates that the volatile components, which are dissolved in high-pressure solid mineral phases of mantle peridotite at depths, may be exsolved under decompressive conditions of mantle plume upwelling to produce the initial free fluid phases in the upper mantle. The free fluid phases migrating in the upper mantle may result in lowering of the mantle solidus (and liquidus), thereby initiating partial melting of the upper mantle, and in the meantime, producing metasomatic effects on the latter.
文摘Studies of the mantle-derived iherzolites from Nushan show that in addition to CO2,there were present H2O and small amounts of CO, CH4, SO2,Cl and F in the initial mantlc fluids derived fron the asthenospheric mantlc plumc .The imitial fluids accumulated in some regions of the mantle, resulting in lowering of the mantle solidus (and liquidus) and partial melting of the upper mantle. Melts formed from low-degree of fluid-involved partial melting of the upper mantle would be highly enriched in incompatible elements.Fluies and melts are allthe metasomatic agents for mantle metasomatism, and the interaction between them and the depleted mantle could result in the substan-tial local enrichment of LREE and incompatible elements in the latter.In case that the concentration of H2O in the fluids (and melts) is lower ,only cryptic metasomatism would occur, in case that the concentration of H2O is higher,the degree of partial melting would be higher and hydrous metasomatic phases(e.g. amphiboles )would nucleate. Under such circumstances, there would occur model metasomatism.