Here,N-and P-doped carbon-carbon nanotube CoP(NPC-CNTs-CoP)nanoparticles dodecahedra are achieved by multistep calcination of the Zn-doped zeolitic imidazolate framework ZIF-67 precursor(ZnCo-ZIF).In the structures,th...Here,N-and P-doped carbon-carbon nanotube CoP(NPC-CNTs-CoP)nanoparticles dodecahedra are achieved by multistep calcination of the Zn-doped zeolitic imidazolate framework ZIF-67 precursor(ZnCo-ZIF).In the structures,the presence of N and P atoms,abundant CNTs and the CoP nanoparticles can enhance electrochemical activity and promote the structural stability of materials.As the temperature increases,the Zn contents gradually reduce to zero,which provides more active sites for electrochemical testing.Furthermore,the high specific surface area and microporous behavior of NPC-CNTsCoP-9 make it excellent in electrocatalytic testing.NPCCNTs-CoP-9 shows a low overpotential of 224 mV at10 mA·cm^-2 in 1.0 mol·L^-1 KOH solution.The strategy of zeolitic imidazole framework-derived transition metal phosphides will provide a new sight for developing energy conversion materials.展开更多
基金financially supported by the National Natural Science Foundation of China(No.21671170)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)+2 种基金Program for New Century Excellent Talents of the University in China(No.NCET-13-0645)the Six Talent Plan(No.2015-XCL-030)the Program for Colleges Natural Science Research in Jiangsu Province(No.18KJB150036)。
文摘Here,N-and P-doped carbon-carbon nanotube CoP(NPC-CNTs-CoP)nanoparticles dodecahedra are achieved by multistep calcination of the Zn-doped zeolitic imidazolate framework ZIF-67 precursor(ZnCo-ZIF).In the structures,the presence of N and P atoms,abundant CNTs and the CoP nanoparticles can enhance electrochemical activity and promote the structural stability of materials.As the temperature increases,the Zn contents gradually reduce to zero,which provides more active sites for electrochemical testing.Furthermore,the high specific surface area and microporous behavior of NPC-CNTsCoP-9 make it excellent in electrocatalytic testing.NPCCNTs-CoP-9 shows a low overpotential of 224 mV at10 mA·cm^-2 in 1.0 mol·L^-1 KOH solution.The strategy of zeolitic imidazole framework-derived transition metal phosphides will provide a new sight for developing energy conversion materials.