The AZ31 magnesium alloy with a thickness of 1.8 mm was welded by the probeless friction stir spot welding process without Zn interlayer.The influence of process parameters on joint microstructure and mechanical prope...The AZ31 magnesium alloy with a thickness of 1.8 mm was welded by the probeless friction stir spot welding process without Zn interlayer.The influence of process parameters on joint microstructure and mechanical properties was investigated by using different rotating speeds and dwell time.Microstructure of joints is divided into three regions:stir zone,thermomechanically-affected zone and heat-affected zone.With the increase of rotation speed and dwell time,the depth of stir zone gradually increases,and hook defects extend from the interface of two plates to the surface of the upper plate.The tensile shear strength of joints and two fracture modes(shear fracture and plug fracture)are closely related to hook defects.The maximum tensile shear strength of the joint is 4.22 kN when rotation speed and dwell time are 1180 r/min and 9 s,respectively.Microhardness value and its fluctuation in upper sheet are evidently higher than those of the lower sheet.展开更多
Effects of friction stir spot processing(FSSP)on the microstructures and microhardness of tungsten inert gas(TIG)welded TA15titanium alloy joints were investigated.The macro/micro structural observation and microhardn...Effects of friction stir spot processing(FSSP)on the microstructures and microhardness of tungsten inert gas(TIG)welded TA15titanium alloy joints were investigated.The macro/micro structural observation and microhardness evaluation of the TA15alloy sheets and TA15TIG welded joints were carried out using optical microscope and microhardness tests.The results show that FSSP effectively improves the microstructure and increases the microhardness of the TA15sheets.As for the TIG welded joints,FSSP also effectively improves the microstructure of joints.And the average microhardness value in weld nugget zone is improved significantly,while a small increase of this value in heat affected zone is observed.The hardness in stirring zone is significantly higher than that in the base metal.Two peak values of hardness appear along the width direction in stirring zone.After FSSP,the average hardness of the weld zone of TA15TIG welded joint is significantly higher than that before FSSP.Under the present process parameters,both the surface oxidation in TA15sheets and in TIG welded joints after FSSP are not evident,while the surface forms the bright white layer,which is composed of a great multitude of fine grains.展开更多
Linear friction welding (LFW), as a solid state joining process, has been developed to manufacture and repair blisks in aeroengines. The residual stresses after welding may greatly influence the performance of the w...Linear friction welding (LFW), as a solid state joining process, has been developed to manufacture and repair blisks in aeroengines. The residual stresses after welding may greatly influence the performance of the welded components. In this paper, the distribution of residual stresses in Ti6Al4V joints after LFW was inves- tigated with numerical simulations. The effects of applied forging pressure and temperature field at the end of the oscillating stages on the residual stresses within the joints were investigated. The results show that, the residual tensile stresses at the welded interface in the y-direction are the largest, while the largest compressive stresses being present at the flash root in the z-direction. Furthermore, the forging pressure and temperature field at the end of the oscillating stages strongly affect the magnitude of the residual stresses. The larger forging pressure produced lower residual stresses in the weld plane in all three directions (x-, y-, and z-directions). Larger variance, a, which decides the Gaussian distribution of the temperature field, also yields lower residual stresses. There is good agreement between simulation results and experimental data.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51675435,51875470,52074228)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2021-TZ-01,2021-TS-07)。
基金Projects(51875470,51405389) supported by the National Natural Science Foundation of ChinaProject(2018JM5159) supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(2016YFB1100104) supported by the National Key Research and Development Program of China
文摘The AZ31 magnesium alloy with a thickness of 1.8 mm was welded by the probeless friction stir spot welding process without Zn interlayer.The influence of process parameters on joint microstructure and mechanical properties was investigated by using different rotating speeds and dwell time.Microstructure of joints is divided into three regions:stir zone,thermomechanically-affected zone and heat-affected zone.With the increase of rotation speed and dwell time,the depth of stir zone gradually increases,and hook defects extend from the interface of two plates to the surface of the upper plate.The tensile shear strength of joints and two fracture modes(shear fracture and plug fracture)are closely related to hook defects.The maximum tensile shear strength of the joint is 4.22 kN when rotation speed and dwell time are 1180 r/min and 9 s,respectively.Microhardness value and its fluctuation in upper sheet are evidently higher than those of the lower sheet.
基金Project(51405389) supported by the National Natural Science Foundation of ChinaProject(3102015ZY024) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2014003) supported by the Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,China
文摘Effects of friction stir spot processing(FSSP)on the microstructures and microhardness of tungsten inert gas(TIG)welded TA15titanium alloy joints were investigated.The macro/micro structural observation and microhardness evaluation of the TA15alloy sheets and TA15TIG welded joints were carried out using optical microscope and microhardness tests.The results show that FSSP effectively improves the microstructure and increases the microhardness of the TA15sheets.As for the TIG welded joints,FSSP also effectively improves the microstructure of joints.And the average microhardness value in weld nugget zone is improved significantly,while a small increase of this value in heat affected zone is observed.The hardness in stirring zone is significantly higher than that in the base metal.Two peak values of hardness appear along the width direction in stirring zone.After FSSP,the average hardness of the weld zone of TA15TIG welded joint is significantly higher than that before FSSP.Under the present process parameters,both the surface oxidation in TA15sheets and in TIG welded joints after FSSP are not evident,while the surface forms the bright white layer,which is composed of a great multitude of fine grains.
基金Acknowledgements The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51405389), the Fundamental Research Funds for the Central Universities (Grant No. 3102014JC02010404) and the Research Fund of the State Key Laboratory of Solidification Processing (Grant No. 122-QZ-2015).
文摘Linear friction welding (LFW), as a solid state joining process, has been developed to manufacture and repair blisks in aeroengines. The residual stresses after welding may greatly influence the performance of the welded components. In this paper, the distribution of residual stresses in Ti6Al4V joints after LFW was inves- tigated with numerical simulations. The effects of applied forging pressure and temperature field at the end of the oscillating stages on the residual stresses within the joints were investigated. The results show that, the residual tensile stresses at the welded interface in the y-direction are the largest, while the largest compressive stresses being present at the flash root in the z-direction. Furthermore, the forging pressure and temperature field at the end of the oscillating stages strongly affect the magnitude of the residual stresses. The larger forging pressure produced lower residual stresses in the weld plane in all three directions (x-, y-, and z-directions). Larger variance, a, which decides the Gaussian distribution of the temperature field, also yields lower residual stresses. There is good agreement between simulation results and experimental data.