Mahjong,a complex game with hidden information and sparse rewards,poses significant challenges.Existing Mahjong AIs require substantial hardware resources and extensive datasets to enhance AI capabilities.The authors ...Mahjong,a complex game with hidden information and sparse rewards,poses significant challenges.Existing Mahjong AIs require substantial hardware resources and extensive datasets to enhance AI capabilities.The authors propose a transformer‐based Mahjong AI(Tjong)via hierarchical decision‐making.By utilising self‐attention mechanisms,Tjong effectively captures tile patterns and game dynamics,and it decouples the decision pro-cess into two distinct stages:action decision and tile decision.This design reduces de-cision complexity considerably.Additionally,a fan backward technique is proposed to address the sparse rewards by allocating reversed rewards for actions based on winning hands.Tjong consists of 15M parameters and is trained using approximately 0.5 M data over 7 days of supervised learning on a single server with 2 GPUs.The action decision achieved an accuracy of 94.63%,while the claim decision attained 98.55%and the discard decision reached 81.51%.In a tournament format,Tjong outperformed AIs(CNN,MLP,RNN,ResNet,VIT),achieving scores up to 230%higher than its opponents.Further-more,after 3 days of reinforcement learning training,it ranked within the top 1%on the leaderboard on the Botzone platform.展开更多
The game of Tibetan Go faces the scarcity of expert knowledge and research literature.Therefore,we study the zero learning model of Tibetan Go under limited computing power resources and propose a novel scaleinvariant...The game of Tibetan Go faces the scarcity of expert knowledge and research literature.Therefore,we study the zero learning model of Tibetan Go under limited computing power resources and propose a novel scaleinvariant U-Net style two-headed output lightweight network TibetanGoTinyNet.The lightweight convolutional neural networks and capsule structure are applied to the encoder and decoder of TibetanGoTinyNet to reduce computational burden and achieve better feature extraction results.Several autonomous self-attention mechanisms are integrated into TibetanGoTinyNet to capture the Tibetan Go board’s spatial and global information and select important channels.The training data are generated entirely from self-play games.TibetanGoTinyNet achieves 62%–78%winning rate against other four U-Net style models including Res-UNet,Res-UNet Attention,Ghost-UNet,and Ghost Capsule-UNet.It also achieves 75%winning rate in the ablation experiments on the attention mechanism with embedded positional information.The model saves about 33%of the training time with 45%–50%winning rate for different Monte–Carlo tree search(MCTS)simulation counts when migrated from 9×9 to 11×11 boards.Code for our model is available at https://github.com/paulzyy/TibetanGoTinyNet.展开更多
We proposed a method using latent regression Bayesian network (LRBN) toextract the shared speech feature for the input of end-to-end speech recognition model.The structure of LRBN is compact and its parameter learning...We proposed a method using latent regression Bayesian network (LRBN) toextract the shared speech feature for the input of end-to-end speech recognition model.The structure of LRBN is compact and its parameter learning is fast. Compared withConvolutional Neural Network, it has a simpler and understood structure and lessparameters to learn. Experimental results show that the advantage of hybridLRBN/Bidirectional Long Short-Term Memory-Connectionist Temporal Classificationarchitecture for Tibetan multi-dialect speech recognition, and demonstrate the LRBN ishelpful to differentiate among multiple language speech sets.展开更多
To tackle the problem of aquatic environment pollution,a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory.We propose a garbage detection method based on a modified YOLOv4,...To tackle the problem of aquatic environment pollution,a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory.We propose a garbage detection method based on a modified YOLOv4,allowing high-speed and high-precision object detection.Specifically,the YOLOv4 algorithm is chosen as a basic neural network framework to perform object detection.With the purpose of further improvement on the detection accuracy,YOLOv4 is transformed into a four-scale detection method.To improve the detection speed,model pruning is applied to the new model.By virtue of the improved detection methods,the robot can collect garbage autonomously.The detection speed is up to 66.67 frames/s with a mean average precision(mAP)of 95.099%,and experimental results demonstrate that both the detection speed and the accuracy of the improved YOLOv4 are excellent.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:62276285,62236011Major Project of National Social Sciences Foundation of China,Grant/Award Number:20&ZD279。
文摘Mahjong,a complex game with hidden information and sparse rewards,poses significant challenges.Existing Mahjong AIs require substantial hardware resources and extensive datasets to enhance AI capabilities.The authors propose a transformer‐based Mahjong AI(Tjong)via hierarchical decision‐making.By utilising self‐attention mechanisms,Tjong effectively captures tile patterns and game dynamics,and it decouples the decision pro-cess into two distinct stages:action decision and tile decision.This design reduces de-cision complexity considerably.Additionally,a fan backward technique is proposed to address the sparse rewards by allocating reversed rewards for actions based on winning hands.Tjong consists of 15M parameters and is trained using approximately 0.5 M data over 7 days of supervised learning on a single server with 2 GPUs.The action decision achieved an accuracy of 94.63%,while the claim decision attained 98.55%and the discard decision reached 81.51%.In a tournament format,Tjong outperformed AIs(CNN,MLP,RNN,ResNet,VIT),achieving scores up to 230%higher than its opponents.Further-more,after 3 days of reinforcement learning training,it ranked within the top 1%on the leaderboard on the Botzone platform.
基金the National Natural Science Foundation of China(Nos.62276285 and 62236011)the Major Projects of Social Science Fundation of China(No.20&ZD279)。
文摘The game of Tibetan Go faces the scarcity of expert knowledge and research literature.Therefore,we study the zero learning model of Tibetan Go under limited computing power resources and propose a novel scaleinvariant U-Net style two-headed output lightweight network TibetanGoTinyNet.The lightweight convolutional neural networks and capsule structure are applied to the encoder and decoder of TibetanGoTinyNet to reduce computational burden and achieve better feature extraction results.Several autonomous self-attention mechanisms are integrated into TibetanGoTinyNet to capture the Tibetan Go board’s spatial and global information and select important channels.The training data are generated entirely from self-play games.TibetanGoTinyNet achieves 62%–78%winning rate against other four U-Net style models including Res-UNet,Res-UNet Attention,Ghost-UNet,and Ghost Capsule-UNet.It also achieves 75%winning rate in the ablation experiments on the attention mechanism with embedded positional information.The model saves about 33%of the training time with 45%–50%winning rate for different Monte–Carlo tree search(MCTS)simulation counts when migrated from 9×9 to 11×11 boards.Code for our model is available at https://github.com/paulzyy/TibetanGoTinyNet.
文摘We proposed a method using latent regression Bayesian network (LRBN) toextract the shared speech feature for the input of end-to-end speech recognition model.The structure of LRBN is compact and its parameter learning is fast. Compared withConvolutional Neural Network, it has a simpler and understood structure and lessparameters to learn. Experimental results show that the advantage of hybridLRBN/Bidirectional Long Short-Term Memory-Connectionist Temporal Classificationarchitecture for Tibetan multi-dialect speech recognition, and demonstrate the LRBN ishelpful to differentiate among multiple language speech sets.
基金supported by the National Natural Science Foundation of China(Nos.61725305,U1909206,T2121002,and62073196)the Postdoctoral Innovative Talent Support Program(No.BX2021010)the S&T Program of Hebei Province,China(No.F2020203037)。
文摘To tackle the problem of aquatic environment pollution,a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory.We propose a garbage detection method based on a modified YOLOv4,allowing high-speed and high-precision object detection.Specifically,the YOLOv4 algorithm is chosen as a basic neural network framework to perform object detection.With the purpose of further improvement on the detection accuracy,YOLOv4 is transformed into a four-scale detection method.To improve the detection speed,model pruning is applied to the new model.By virtue of the improved detection methods,the robot can collect garbage autonomously.The detection speed is up to 66.67 frames/s with a mean average precision(mAP)of 95.099%,and experimental results demonstrate that both the detection speed and the accuracy of the improved YOLOv4 are excellent.