In this paper, we study the number of limit cycles of a near-Hamiltonian system having Za- equivariant quintic perturbations. Using the methods of Hopf and heteroclinic bifurcation theory, we find that the perturbed s...In this paper, we study the number of limit cycles of a near-Hamiltonian system having Za- equivariant quintic perturbations. Using the methods of Hopf and heteroclinic bifurcation theory, we find that the perturbed system can have 28 limit cycles, and its location is also given. The main result can be used to improve the lower bound of the maximal number of limit cycles for some polynomial systems in a previous work, which is the main motivation of the present paper.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11271261,11461001)
文摘In this paper, we study the number of limit cycles of a near-Hamiltonian system having Za- equivariant quintic perturbations. Using the methods of Hopf and heteroclinic bifurcation theory, we find that the perturbed system can have 28 limit cycles, and its location is also given. The main result can be used to improve the lower bound of the maximal number of limit cycles for some polynomial systems in a previous work, which is the main motivation of the present paper.