Let I 2N be an ideal and let XI = span{χI : I ∈ I}, and let pI be the quotient norm of l∞/XI. In this paper, we show first that for each proper ideal I 2N, the ideal convergence deduced by I is equivalent to p...Let I 2N be an ideal and let XI = span{χI : I ∈ I}, and let pI be the quotient norm of l∞/XI. In this paper, we show first that for each proper ideal I 2N, the ideal convergence deduced by I is equivalent to pI-kernel convergence. In addition, let K = {x*oχ(·) : x*∈ p(e)}, where p(x) = lim supn→∞1/n(∑k=1n|x(k)|, and let Iμ = {A N : μ(A) = 0} for all μ = x*oχ(·) ∈ K. Then Iμ is a proper ideal. We also show that the ideal convergence deduced by the proper ideal Iμ, the p-kernel convergence and the statistical convergence are also equivalent.展开更多
The purpose of this paper is to discuss those kinds of statistical convergence, in terms of F , or ideal Z-convergence, which are equivalent to measure convergence defined by a single statistical measure. We prove a n...The purpose of this paper is to discuss those kinds of statistical convergence, in terms of F , or ideal Z-convergence, which are equivalent to measure convergence defined by a single statistical measure. We prove a number of characterizations of a single statistical measure μ-convergence by using properties of its corresponding quotient Banach space l∞/l∞ (Iμ). We also show that the usual sequential convergence is not equivalent to a single measure convergence.展开更多
基金supported by Plan Project of Education Department of Fujian Province(Grant No.JA11275)
文摘Let I 2N be an ideal and let XI = span{χI : I ∈ I}, and let pI be the quotient norm of l∞/XI. In this paper, we show first that for each proper ideal I 2N, the ideal convergence deduced by I is equivalent to pI-kernel convergence. In addition, let K = {x*oχ(·) : x*∈ p(e)}, where p(x) = lim supn→∞1/n(∑k=1n|x(k)|, and let Iμ = {A N : μ(A) = 0} for all μ = x*oχ(·) ∈ K. Then Iμ is a proper ideal. We also show that the ideal convergence deduced by the proper ideal Iμ, the p-kernel convergence and the statistical convergence are also equivalent.
文摘The purpose of this paper is to discuss those kinds of statistical convergence, in terms of F , or ideal Z-convergence, which are equivalent to measure convergence defined by a single statistical measure. We prove a number of characterizations of a single statistical measure μ-convergence by using properties of its corresponding quotient Banach space l∞/l∞ (Iμ). We also show that the usual sequential convergence is not equivalent to a single measure convergence.