A diffeomorphism is non-uniformly partially hyperbolic if it preserves an ergodic measure with at least one zero Lyapunov exponent.We prove that a C^(1)-smooth Z^(d)-action has the quasishadowing property if one of th...A diffeomorphism is non-uniformly partially hyperbolic if it preserves an ergodic measure with at least one zero Lyapunov exponent.We prove that a C^(1)-smooth Z^(d)-action has the quasishadowing property if one of the generators is C^(1+α)(α>0)non-uniformly partially hyperbolic.展开更多
基金supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202300802)the second author is supported by NSFC(Grant Nos.11801261,12071285)+1 种基金the third author is supported by NSFC(Grant Nos.11871120,12071082)Natural Science Foundation of Chongqing(Grant No.cstc2021jcyj-msxmX0299)。
文摘A diffeomorphism is non-uniformly partially hyperbolic if it preserves an ergodic measure with at least one zero Lyapunov exponent.We prove that a C^(1)-smooth Z^(d)-action has the quasishadowing property if one of the generators is C^(1+α)(α>0)non-uniformly partially hyperbolic.