Microgels with a thermo-sensitive poly(N-isopropylacrylamide)(polyNIPAm) backbone and bis-imidazolium(VIM) ionic cross-links, denoted as poly(NIPAm-co-VIM), were successfully prepared. The as-synthesized ionic microge...Microgels with a thermo-sensitive poly(N-isopropylacrylamide)(polyNIPAm) backbone and bis-imidazolium(VIM) ionic cross-links, denoted as poly(NIPAm-co-VIM), were successfully prepared. The as-synthesized ionic microgels were converted to nanoreactors, denoted as Au@PNI MGs, upon generation and immobilization of gold nanoparticles(Au NPs) of 5–8 nm in size into poly(NIPAm-co-VIM). The content of Au NPs in microgels could be regulated by controlling the 1,6-dibromohexane/vinylimidazole molar ratio in the quaternization reaction. The microgel-based nanoreactors were morphologically spherical and uniform in size, and presented reversible thermo-sensitive behavior with volume phase transition temperatures(VPTTs) at 39–40 °C. The Au@PNI MGs were used for the reduction of 4-nitrophenol, of which the catalytic activity could be modulated by temperature.展开更多
The novel microgels, poly[di(ethylene glycol) methyl ether methacrylate-co-2-methoxyethyl acrylate] poly(DEGMMA-co-MEA) microgels, were synthesized. The poly(DEGMMA-co-MEA) microgels were thermo-sensitive and ex...The novel microgels, poly[di(ethylene glycol) methyl ether methacrylate-co-2-methoxyethyl acrylate] poly(DEGMMA-co-MEA) microgels, were synthesized. The poly(DEGMMA-co-MEA) microgels were thermo-sensitive and exhibited a volume phase transitive temperature(VPTT) of 14–22 ℃. The incorporation of hydrophobic comonomer MEA shifted the VPTT of poly(DEGMMA-co-MEA) microgels to lower temperatures. The interfacial interaction of poly(DEGMMA-co-MEA) microgels and three model proteins, namely fibrinogen, bovine serum albumin and lysozyme, was investigated by quartz crystal microbalance(QCM). An injection sequence of "microgel-after-protein" was then established for the real-time study of the interaction of proteins and the microgels at their swollen and collapsed states by using QCM technique. The results indicated that the interfacial interaction of poly(DEGMMA-co-MEA) microgels and adsorbed protein layers was mainly determined by the electrostatic interaction. Because poly(DEGMMA-co-MEA) microgels were negatively charged in Tris-HCl buffer solution(pH = 7.4), the microgels did not adsorb on negatively charged fibrinogen and bovine serum albumin layers but strongly adsorbed on positively charged lysozyme layer. Stronger interaction between lysozyme and the microgels at collapsed state(i.e. at 37 ℃) was observed. Furthermore, the incorporation of MEA might weaken the interaction between poly(DEGMMA-co-MEA) microgels and proteins.展开更多
基金the National Natural Science Foundation of China(No.21704092)Science Foundation of Zhejiang SciTech University(No.16062194-Y)for financial support
文摘Microgels with a thermo-sensitive poly(N-isopropylacrylamide)(polyNIPAm) backbone and bis-imidazolium(VIM) ionic cross-links, denoted as poly(NIPAm-co-VIM), were successfully prepared. The as-synthesized ionic microgels were converted to nanoreactors, denoted as Au@PNI MGs, upon generation and immobilization of gold nanoparticles(Au NPs) of 5–8 nm in size into poly(NIPAm-co-VIM). The content of Au NPs in microgels could be regulated by controlling the 1,6-dibromohexane/vinylimidazole molar ratio in the quaternization reaction. The microgel-based nanoreactors were morphologically spherical and uniform in size, and presented reversible thermo-sensitive behavior with volume phase transition temperatures(VPTTs) at 39–40 °C. The Au@PNI MGs were used for the reduction of 4-nitrophenol, of which the catalytic activity could be modulated by temperature.
基金financially supported by the National Natural Science Foundation of China(Nos.21274129 and 21322406)the Fundamental Research Funds for the Central Universities(No.2014XZZX003-21)+2 种基金the third level of 2013 Zhejiang Province 151 Talent ProjectOpen Research Fund of State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry,Chinese Academy of Sciences
文摘The novel microgels, poly[di(ethylene glycol) methyl ether methacrylate-co-2-methoxyethyl acrylate] poly(DEGMMA-co-MEA) microgels, were synthesized. The poly(DEGMMA-co-MEA) microgels were thermo-sensitive and exhibited a volume phase transitive temperature(VPTT) of 14–22 ℃. The incorporation of hydrophobic comonomer MEA shifted the VPTT of poly(DEGMMA-co-MEA) microgels to lower temperatures. The interfacial interaction of poly(DEGMMA-co-MEA) microgels and three model proteins, namely fibrinogen, bovine serum albumin and lysozyme, was investigated by quartz crystal microbalance(QCM). An injection sequence of "microgel-after-protein" was then established for the real-time study of the interaction of proteins and the microgels at their swollen and collapsed states by using QCM technique. The results indicated that the interfacial interaction of poly(DEGMMA-co-MEA) microgels and adsorbed protein layers was mainly determined by the electrostatic interaction. Because poly(DEGMMA-co-MEA) microgels were negatively charged in Tris-HCl buffer solution(pH = 7.4), the microgels did not adsorb on negatively charged fibrinogen and bovine serum albumin layers but strongly adsorbed on positively charged lysozyme layer. Stronger interaction between lysozyme and the microgels at collapsed state(i.e. at 37 ℃) was observed. Furthermore, the incorporation of MEA might weaken the interaction between poly(DEGMMA-co-MEA) microgels and proteins.