As the signal reflected by the corner-cube reflector arrays is very weak and easily submerged during the full moon,we analyze the influence of the thermal effect of corner-cube reflector arrays on the intensity of lun...As the signal reflected by the corner-cube reflector arrays is very weak and easily submerged during the full moon,we analyze the influence of the thermal effect of corner-cube reflector arrays on the intensity of lunar laser ranging echo.Laser ranging measurements during the penumbra lunar eclipse verify suspected thermal deformation in the Lunakhod 2 reflectors.Signal levels vary over two orders of magnitude as the penumbra eclipse progresses.This can be explained by the change in the dihedral angle of the corner-cube reflectors caused by the temperature.The results show that when the dihedral angle errors reach 1,the energy is reduced by 100 times compared with the ideal corner-cube reflector.In the experiment,our findings suggest that when the corner-cube reflector arrays enter the penumbra of the earth,the effective echo signal level which reaches 0.18 photons/s far exceeds the historical level of the full moon.However,11 minutes after the penumbra lunar eclipse,the effective echo rate of Lunakhod 2 will drop two orders of magnitude.The mechanism can explain the acute signal deficit observed at full moon.展开更多
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response.The inhibition and reprogramming of the immune system play critical roles in...Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response.The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression.Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors.Represented by immune checkpoint blockade and adoptive cell transfer,tumor immunotherapy has seen tremendous success in the clinic,with the capability to induce long-term regression of some tumors that are refractory to all other treatments.Among them,immune checkpoint blocking therapy,represented by PD-1/PD-L1 inhibitors(nivolumab)and CTLA-4 inhibitors(ipilimumab),has shown encouraging therapeutic effects in the treatment of various malignant tumors,such as non-small cell lung cancer(NSCLC)and melanoma.In addition,with the advent of CAR-T,CAR-M and other novel immunotherapy methods,immunotherapy has entered a new era.At present,evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect.However,the overall clinical response rate of tumor immunotherapy still needs improvement,which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents.Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future.In this article,we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12033009)。
文摘As the signal reflected by the corner-cube reflector arrays is very weak and easily submerged during the full moon,we analyze the influence of the thermal effect of corner-cube reflector arrays on the intensity of lunar laser ranging echo.Laser ranging measurements during the penumbra lunar eclipse verify suspected thermal deformation in the Lunakhod 2 reflectors.Signal levels vary over two orders of magnitude as the penumbra eclipse progresses.This can be explained by the change in the dihedral angle of the corner-cube reflectors caused by the temperature.The results show that when the dihedral angle errors reach 1,the energy is reduced by 100 times compared with the ideal corner-cube reflector.In the experiment,our findings suggest that when the corner-cube reflector arrays enter the penumbra of the earth,the effective echo signal level which reaches 0.18 photons/s far exceeds the historical level of the full moon.However,11 minutes after the penumbra lunar eclipse,the effective echo rate of Lunakhod 2 will drop two orders of magnitude.The mechanism can explain the acute signal deficit observed at full moon.
基金supported by the National Key R&D Program of China(2019YFC1315701 to Y.S.)sponsored by National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital&Shenzhen Hospital,Chinese Academic of Medical Sciences and Peking Union Medical College,Shenzhen(SZ2020ZD004,E010121002)+2 种基金supported by Sanming Project of Medicine in Shenzhen(No.SZSM201812062,No.SZSM201612097)Shenzhen Science and Technology Program(KCXFZ20201221173008022)Shenzhen Key Medical Discipline Construction Fund(No.SZXK075).
文摘Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response.The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression.Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors.Represented by immune checkpoint blockade and adoptive cell transfer,tumor immunotherapy has seen tremendous success in the clinic,with the capability to induce long-term regression of some tumors that are refractory to all other treatments.Among them,immune checkpoint blocking therapy,represented by PD-1/PD-L1 inhibitors(nivolumab)and CTLA-4 inhibitors(ipilimumab),has shown encouraging therapeutic effects in the treatment of various malignant tumors,such as non-small cell lung cancer(NSCLC)and melanoma.In addition,with the advent of CAR-T,CAR-M and other novel immunotherapy methods,immunotherapy has entered a new era.At present,evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect.However,the overall clinical response rate of tumor immunotherapy still needs improvement,which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents.Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future.In this article,we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.