期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Gas storage in shale pore system:A review of the mechanism,control and assessment
1
作者 Yue Feng xian-ming xiao +3 位作者 En-Ze Wang Ping Gao Chen-Gang Lu Gang Li 《Petroleum Science》 SCIE EI CSCD 2023年第5期2605-2636,共32页
In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas ex... In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas exploration potential,the gas-bearing properties of shale(quantity,storage state,composition)and their controlling factors are the essential research attracting wide attention in the academic community.This paper reviews the research progress on the retention mechanism,influencing factors,and evaluation methods for resource potential of the shale gas system,and proposes further research directions.Sorption is the main mechanism of gas retention in organic-rich shales;the gas is mainly stored in nanopores of shale in free and sorption states.The presence of water and nonhydrocarbon gases in pores can complicate the process and mechanism of methane(CH4)sorption,and the related theoretical models still need further development.The in-situ gas content and gasbearing properties of shale are governed by the geological properties(organic matter abundance,kerogen type,thermal maturity,mineral composition,diagenesis),the properties of fluids in pores(water,CH_(4),non-hydrocarbon gases),and geological conditions(temperature,pressure,preservation conditions)of the shale itself.For a particular basin or block,it is still challenging to define the main controlling factors,screen favorable exploration areas,and locate sweet spots.Compared to marine shales with extensive research and exploration data,lacustrine and marine-continental transitional shales are a further expanding area of investigation.Various methods have been developed to quantitatively characterize the in-situ gas content of shales,but all these methods have their own limitations,and more in-depth studies are needed to accurately evaluate and predict the in-situ gas content of shales,especially shales at deep depth. 展开更多
关键词 Shale gas Retention mechanism Multi-component adsorption Influencing factors Evaluation method
下载PDF
Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in south China 被引量:29
2
作者 xian-ming xiao Qiang Wei +5 位作者 Hai-Feng Gai Teng-Fei Li Mao-Lin Wang Lei Pan Ji Chen Hui Tian 《Petroleum Science》 SCIE CAS CSCD 2015年第4期573-586,共14页
The Lower Paleozoic shale in south China has a very high maturity and experienced strong tectonic defor- mation. This character is quite different from the North America shale and has inhibited the shale gas evaluatio... The Lower Paleozoic shale in south China has a very high maturity and experienced strong tectonic defor- mation. This character is quite different from the North America shale and has inhibited the shale gas evaluation and exploration in this area. The present paper reports a com- prehensive investigation of maturity, reservoir properties, fluid pressure, gas content, preservation conditions, and other relevant aspects of the Lower Paleozoic shale from the Sichuan Basin and its surrounding areas. It is found that within the main maturity range (2.5 % 〈 EqRo 〈 3.5 %) of the shale, its porosity develops well, having a positive cor- relation with the TOC content, and its gas content is con- trolled mainly by the preservation conditions related to the tectonic deformation, but shale with a super high maturity (EqRo 〉 3.5 %) is considered a high risk for shale gas exploration. Taking the southern area of the Sichuan Basin and the southeastern area of Chongqing as examples of uplifted/folded and faulted/folded areas, respectively, geo- logical models of shale gas content and loss were proposed. For the uplifted/folded area with a simple tectonic defor- mation, the shale system (with a depth 〉 2000 m) has lar- gely retained overpressure during uplifting without a great loss of gas, and an industrial shale gas potential is generally possible. However, for the faulted/folded area with a strong tectonic deformation, the sealing condition of the shale system was usually destroyed to a certain degree with a great loss of free gas, which decreased the pressure coefficient and resulted in a low production capacity. It is predicted that the deeply buried shale (〉3000 m) has a greater gas potential and will become the focus for further exploration and development in most of the south China region (outside the Sichuan Basin). 展开更多
关键词 Lower Paleozoic shale gas MATURITY Maincontrolling factors Tectonic deformation
下载PDF
Reaction characteristics and kinetics of gallium in chlorination roasting of copper tailings using calcium chloride 被引量:2
3
作者 Chang Lei Tao Chen +1 位作者 Bo Yan xian-ming xiao 《Rare Metals》 SCIE EI CAS CSCD 2022年第3期1063-1070,共8页
The mineral composition of copper tailings was examined, and the phase analysis of gallium was conducted for recovery of the rare scattered metal gallium from copper tailings. The reaction characteristics and kinetics... The mineral composition of copper tailings was examined, and the phase analysis of gallium was conducted for recovery of the rare scattered metal gallium from copper tailings. The reaction characteristics and kinetics of gallium in the chlorination roasting of copper tailings were investigated in a tube furnace apparatus under different conditions, including roasting temperature, quantity of chlorination agent,roasting time, and airflow. Calcium chloride was chosen for the chlorination reaction because it is highly effective for volatilization of metals. The results show that gallium mainly exists in limonites in the form of oxides, and increases in roasting temperature, quantity of chlorination agent, and roasting time are conducive to increasing the chloridizing volatilization rate of gallium. The tailings gradually melt when the roasting temperature exceeds 900℃, resulting in a decrease in the chloridizing volatilization rate of gallium. The chloridizing volatilization rate of gallium reaches 78.86%at roasting temperature of 900℃ for 40 min, airflow of 0.1 m^(3)·h^(-1), and calcium content of 33.33 wt%. Study of the reaction kinetics of gallium in chlorination roasting shows that the values of activation energy both for chemically controlled anddiffusion-controlled reactionsare44.64and11.93 kJ·mol^(-1), respectively. This indicates that the chemical reaction serves an important function in the chlorination volatilization of gallium. Taken together, the results reveal the usefulness of tailings as a source of rare metals and provide a basis for gallium recovery and environmentally friendly disposal of copper tailings. 展开更多
关键词 Copper tailings Gallium recovery Chlorination roasting Calcium chloride KINETICS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部